Differential Metabolism of the Pyrrolizidine Alkaloid, Senecionine, in Fischer 344 and Sprague-Dawley Rats

  • Chung, Woon-Gye (Department of Environmental and Molecular Toxicology, Oregon State University) ;
  • Donald R. Buhler (Department of Environmental and Molecular Toxicology, Oregon State University)
  • Published : 2004.05.01

Abstract

The pyrrolizidine alkaloids (PAs), contained in a number of traditional remedies in Africa and Asia, show wide variations in metabolism between animal species but little work has been done to investigate differences between animal strains. The metabolism of the PA senecionine (SN) in Fischer 344 (F344) rats has been studied in order to compare to that found in the previously investigated Sprague-Dawley (SO) rats (Drug Metab. Dispos. 17: 387, 1989). There was no difference in the formation of ($\pm$) 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, bioactivation) by hepatic microsomes from either sex of SO and F344 rats. However, hepatic microsomes from male and female F344 rats had greater activity in the Noxidation (detoxication) of SN by 88% and 180%, respectively, when compared to that of male and female SD rats. Experiments conducted at various pH showed an optimum pH of 8.5, the optimal pH for flavin-containing monooxygenase (FMO), for SN N-oxidation by hepatic microsomes from F344 females. In F344 males, however, a bimodal pattern was obtained with activity peaks at pH 7.6 and 8.5 reflecting the possible involvement of both cytochrome P450 (CYP) and FMO. Use of specific inhibitors (SKF525A, 1-benzylimidazole and methimazole) showed that the N-oxide of SN was primarily produced by FMO in both sexes of F344 rats. In contrast, SN N-oxide formation is known to be catalyzed mainly by CYP2C11 rather than FMO in SD rats. This study, therefore, demonstrated that there were substantial differences in the formation of SN N-oxide by hepatic microsomes from F344 and SD rats and that this detoxification is catalyzed primarily by two different enzymes in the two rat strains. These findings suggest that significant variations in PA biotransformation can exist between different animal strains.

Keywords

References

  1. Anxiously, M., Pohjanvirta, R., Honkakoski, P., Torronen, R., and Tuomisto, J. 2,3,7,8-Tetrachlorodibenzo-${\rho}$-dioxin (TCDD) induced ethoxyresorufin-O-deethylase (EROD) and aldehyde dehydrogenase (ALDH3) activities in the brain and liver. A comparison between the most TCDD-susceptible and the most TCDD-resistant rat strain. Biochem. Pharmacol., 46, 651-659 (1993) https://doi.org/10.1016/0006-2952(93)90551-7
  2. Arseculeratne, S. N., Gunatilaka, A. A., and Panabokke, R. G. Toxicity of some traditional medicinal herbs. J. Ethnopharmacol., 13, 323-335 (1985) https://doi.org/10.1016/0378-8741(85)90078-9
  3. Augustine, J. A. and Zemaitis, M. A. A comparison of the effects of cyclosporine on the hepatic microsomal drug metabolism in three different strains of rat. Gen. Pharmacol., 20, 137-141 (1989) https://doi.org/10.1016/0306-3623(89)90005-0
  4. Cashman, J. R. and Hanzlik, R. P. Microsomal oxidation of thiobenzamide: A photometric assay for the flavin-containing monooxygenase. Biochem. Biophys. Res. Commun., 98, 147-153 (1981) https://doi.org/10.1016/0006-291X(81)91881-7
  5. Chesney, C. F. and Allen, J. R. Resistance of the guinea pig to pyrrolizidine alkaloid intoxication. Toxicol. Appl. Pharmacol., 26,385-392 (1973) https://doi.org/10.1016/0041-008X(73)90274-3
  6. Chou, M. W., Wang, Y. P., Yan, J., Yang, Y. C., Beger, R. D., Williams, L. D., Doerge, D. R., and Fu, P. P. Riddellineoxide is a phytochemical and mammalian metabolite with genotoxic activity that is comparable to the parent pyrrolizidine alkaloid riddelline. Toxicol. Lett., 145, 239-247 (2003) https://doi.org/10.1016/S0378-4274(03)00293-5
  7. Chung, W. G. and Buhler, D. R., The effect of spironolactone treatment on the cytochrome P450-mediated metabolism of the pyrrolizidine alkaloid senecionineby hepatic microsomes from rats and guinea pigs. Toxicol. Appl. Pharmacol., 127, 314-319 (1994) https://doi.org/10.1006/taap.1994.1167
  8. Chung, W. G. and Buhler, D. R., Major factors for the susceptibility of guinea pig to the pyrrolizidine alkaloid jacobine. Drug Metab. Dispos., 23, 1263-1267 (1995)
  9. Chung, W. G., Miranda, C. L., and Buhler, D. R., A cytochrome P4502B form is the major bioactivation enzyme for the pyrrolizidine alkaloid senecionine in guinea pig. Xenobiotica 25, 929-939 (1995) https://doi.org/10.3109/00498259509046664
  10. Coulombe, R. A. Jr., Pyrrolizidine alkaloids in foods. Adv. Food Nutr. Res., 45, 61-99 (2003) https://doi.org/10.1016/S1043-4526(03)45003-1
  11. Debessae, W. T., Huan, J., and Cheeke, P. R., Interactions in sheep between tall fescue ergot alkaloids and hepatotoxic carbon tetrachloride and Senecio pyrrolizidine alkaloids. Vet. Hum. Toxicol., 41, 129-133 (1999)
  12. Guengerich, F. P., Dannan, G. A., Wright, S. T., Martin, M. V., and Kaminsky, L. S., Purification and characterization of microsomal cytochrome P450s. Xenobiotica, 12, 701-716 (1982) https://doi.org/10.3109/00498258209038945
  13. Guo, Z., Raeissi, S., White, R. B., and Stevens, J. C., Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes. Drug Metab Dispos., 25, 390-393 (1997)
  14. Huan, J. Y., Miranda, C. L., Buhler, D. R., and Cheeke, P. R., Species differences in the hepatic microsomal enzyme metabolism of the pyrrolizidine alkaloids. Toxicol. Lett. 99, 127-137 (1998) https://doi.org/10.1016/S0378-4274(98)00152-0
  15. Kedzierski, B. and Buhler, D. R., Method for determination of pyrrolizidine alkaloids and their metabolites by high-performance liquid chromatography. Anal. Biochem., 152, 59-65 (1986) https://doi.org/10.1016/0003-2697(86)90119-3
  16. Koster, A. S., Nieuwenhuis, L., and Frankhuijzen-Sierevogel, A. C., Comparison of microsomal drug-metabolizing enzymes in 14 rat inbred strains. Biochem. Pharmacol., 38, 759-765 (1989) https://doi.org/10.1016/0006-2952(89)90228-1
  17. Kulkarni, S. G., Warbritton, A., Bucci, T. J., and Mehaendale, H. M.m Antimitotic intervention with colchicine alters the outcome of o-DCB-induced hepatotoxicity in Fischer 344 rats. Toxicology, 27, 79-88 (1997)
  18. Larsen-Su, S. and Williams, D. E., Dietary indole-3-carbinol inhibits FMO activity and the expression of flavin-containing monooxygenase form 1 in rat liver and intestine. Drug Metab. Dispos., 24, 927-931 (1996)
  19. Lawton, M. P. and Philpot, R. M., Molecular genetics of flavin-dependent monooxygenases. Pharmacogenetics, 3, 40-44 (1993a) https://doi.org/10.1097/00008571-199302000-00004
  20. Lawton, M. P. and Philpot, R. M., Functional characterization of flavin-containing monooxygenase 1B1 expressed in Saccharomyces cerevisiae and Escherichia coli and analysis of proposed FAD- and membrane-binding domains. J. Bioi. Chem., 268, 5728-5734 (1993b)
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951)
  22. Mattocks, A. R. and Bird, I., Pyrrolic and N-oxide metabolites formed from pyrrolizidine alkaloids by hepatic microsomes in vitro: relevance to in vivo hepatotoxicity. Chem. Biol. Interact., 43, 209-222 (1983) https://doi.org/10.1016/0009-2797(83)90096-0
  23. Mattocks, A. R., Chemistry and toxicology of pyrrolizidine alkaloids. Academic Press, New York (1986)
  24. McLean, E. K., The toxic actions of pyrrolizidine (Senecio) alkaloids. Pharmacol. Rev. 22, 249-483 (1970)
  25. Miranda, C. L., Chung, W. G., Reed, R. L., Zhao, X., Henderson, M. C., Wang, J. L., Williams, D. E., and Buhler, D. R., Flavin-containing monooxygenase: A major detoxifying enzyme for the pyrrolizidine alkaloid senecionine in guinea pig tissues. Biochem. Biophys. Res. Commun., 178, 546-552 (1991a) https://doi.org/10.1016/0006-291X(91)90142-T
  26. Miranda, C. L., Reed, R. L., Guengerich, F. P., and Buhler, D R., Role of cytochrome P450 IIIA4 in the metabolism of the pyrrolizidine alkaloid senecionine in human liver. Carcino-genesis, 12, 515-519 (1991b) https://doi.org/10.1093/carcin/12.3.515
  27. Nagata, T., Williams, D. E., and Ziegler, D. M. Substrate specificities of rabbit lung and porcine liver flavin-containing monooxygenase: difference due to substrate size. Chem. Res. Toxicol., 3, 372-376 (1990) https://doi.org/10.1021/tx00016a016
  28. Noller, B. N., Myers, S., Abegaz, B., Singh, M. M., Dronenberg, F., and Bodeker, G. Global forum on safety of herbal and traditional medicine: July 7, 2001, Gold Coast, Australia. J. Altern. Complement. Med., 7, 683-601 (2001) https://doi.org/10.1089/10755530152639828
  29. Omura, R. and Sato, T., The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem., 239, 2370-2374 (1964)
  30. Pan, L. C., Wilson, D. W., and Segall, H. J., Strain differences in the response of Fischer 344 and Sprague-Dawley rats to monocrotaline induced pulmonary vascular disease. Toxicology, 79, 21-35 (1993) https://doi.org/10.1016/0300-483X(93)90203-5
  31. Rampersaud, A. and Walz, F. G., Polymorphisms of four hepatic cytochrome P450 in twenty-eight inbred strains of rat. Biochem. Gen., 25, 527-534 (1987) https://doi.org/10.1007/BF00554354
  32. Roeder, E., Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie, 55, 711-726 (2000)
  33. Sato, R. and Omura, T., Cytochrome P450. Academic Press, New York, p233 (1978)
  34. Simon, B., De Looze, S., Ronai, A., and Von Deimling, O., Identification of rat liver carboxylesterase isozymes (EC 3.1.1.1) using polyacrylamide gel electrophoresis and isoelectric focusing. Electrophoresis, 6, 575-582 (1985) https://doi.org/10.1002/elps.1150061202
  35. Steenkamp, V., Stewart, M. J., van der Merwe, S., Zuckerman, M., and Crowther, N. J., The effect of Senecio latifolius, a plant used as a South African traditional medicine, on a human hepatoma cell line. J. Ethnopharmacol., 78, 51-58 (2001) https://doi.org/10.1016/S0378-8741(01)00321-X
  36. Stegelmeier, B. L., Edgar, J. A., Colegate, S. M., Gardner, D. R., Schoch, T. K., Coulombe, R. A., and Molyneux, R. J. Pyrrolizidine alkaloid plants, metabolism and toxicity. J. Nat. Toxins, 8, 95-116 (1999)
  37. Tsokos-Kuhn, J. O., Lethal injury by diquat redox cycling in an isolated hepatocyte model. Arch. Biochem. Biophys., 265, 415-424 (1988) https://doi.org/10.1016/0003-9861(88)90144-0
  38. Waxman, D. J., Rat hepatic cytochrome P-450 isoenzyme 2c. J. Biol. Chem., 259, 15481-15490 (1984)
  39. White, I. H. N. and Mattocks, A. R., Reaction of dihyropyrrolizines with deoxyribonucleic acids in vitro. Biochem. J., 129, 291-297 (1972)
  40. White, I. N. H., Mattocks, A. R., and Butler, W. H., The conversion of the pyrrolizidine alkaloid retrorsine to pyrrolic derivatives in vivo and in vitro and its acute toxicity to various animal species. Chem. Biol. lnteract., 6, 207-218 (1973) https://doi.org/10.1016/0009-2797(73)90048-3
  41. Williams, D. E., Reed, R. L., Kedzierski, B., Dannan, G. A., Guengerich, F. P., and Buhler, D. R., Bioactivation and detoxification of the pyrrolizidine alkaloid senecionine by cytochrome P450 enzymes in rat liver. Drug Metab. Dispos., 17, 387-392 (1989a)
  42. Williams, D. E., Reed, R. L., Kedzierski, B., Ziegler, D. M., and Buhler, D. R., The role of flavin-containing monooxygenase in the N-oxidation of the pyrrolizidine alkaloid senecionine. Drug Metab. Dispos., 17, 380-386 (1989b)
  43. Wood, A. W., Ryan, D. E., Thomas, P. E., and Levin, W., Regio- and stereo-selective metabolism of two C19 steroids by five highly purified and reconstituted rat hepatic cytochrome P450 isozymes. J. Biol. Chem., 258, 8839-8847 (1986)
  44. Ziegler, D. M., Flavin-containing monooxygenase: catalytic mechanism and substrate specificities. Drug Metab. Rev., 19, 1-32 (1988) https://doi.org/10.3109/03602538809049617
  45. Ziegler, D. M., Recent studies on the structure and function of multisubstrate flavin-containing monooxygenase. Annu. Rev. Pharmacol. Toxicol., 33, 179-199 (1993). https://doi.org/10.1146/annurev.pa.33.040193.001143