Effects of Polysaccharide Ginsan from Panax ginseng on Liver Function

  • Song, Jie-Young (Laboratory of Immunology, Korea Institute of Radiological & Medical Sciences, KAERI) ;
  • Medea-Akhalaia (Laboratory of Radiation Biophysics, Department of Biophysics, Moscow State University) ;
  • Alexander-Platonov (Department of Radioecology, Ecological Faculty, Peoples Friendship University of Russi) ;
  • Kim, Hyung-Doo (Laboratory of Immunology, Korea Institute of Radiological & Medical Sciences, KAER) ;
  • Jung, In-Sung (Laboratory of Immunology, Korea Institute of Radiological & Medical Sciences, KAER) ;
  • Han, Young-Soo (Laboratory of Immunology, Korea Institute of Radiological & Medical Sciences, KAER) ;
  • Yun, Yeon-Sook (Laboratory of Immunology, Korea Institute of Radiological & Medical Sciences, KAERI)
  • Published : 2004.05.01

Abstract

Ginsan, a polysaccharide isolated from Panax ginseng, has been shown to be a potent immunomodulator, producing a variety of cytokines such as TNF-a, IL-1$\beta$, IL-2, IL-6, IL-12, IFN-${\gamma}$ and GM-CSF, and stimulating lymphoid cells to proliferate. In the present study, we analyzed some immune functions 1$^{st}$-5$^{th}$ days after ginsan i.p. injection, including the level of non-protein thiols (NPSH) as antioxidants, heme oxygenase (HO) activity as a marker of oxidative stress, zoxazolamine-induced paralysis time and level of hepatic cytochrome P-450 (CYP450) as indices of drug metabolism system, and activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, and albumin level as indicators of hepatotoxicity. Ginsan in the dose of 100 mg/kg caused marked elevation (1.7-2 fold) of HO activity, decrease of total CYP450 level (by 20-34%), and prolongation of zoxazolamine-induced paralysis time (by 65-70%), and showed some differences between male and female mice. Ginsan treatment did not seem to cause hepatic injury, since serum AST, ALT, and ALP activities and levels of total bilirubin and albumin were not changed.d.

Keywords

References

  1. Abdel-Razzak, Z., Loyer, P., Fautrel, A., Gautier, J. C., Corcos, L., Turlin, B., Beaune, P., and Guillouzo, A., Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol. Pharmacal., 44, 707-715 (1993)
  2. Aoshiba, K., Yasui, S., Nishimura, K., and Nagai, A., Thiol depletion induces apoptosis in cultured lung fibroblasts. Am. J. Respir. Cell Mol. Biol., 21, 54-64 (1999) https://doi.org/10.1165/ajrcmb.21.1.3411
  3. Applegate, L. A., Luscher, P., and Tyrrell, R. M., Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res., 51, 974-978 (1991)
  4. Bao, H., Vepakomma, M., and Sarkar, M. A., Benzo(a)pyrene exposure induces CYP1A1 activityand expression in human endometrial cells. J. Steroid Biochem. Mol. Biol., 81, 37-45 (2002) https://doi.org/10.1016/S0960-0760(02)00045-6
  5. Clark, J. E., Foresti, R., Green, C. J., and Motterlini, R., Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem. J., 348 Pt 3, 615-619 (2000) https://doi.org/10.1042/0264-6021:3480615
  6. Dertinger, S. D., Nazarenko, D. A., Silverstone, A. E., and Gasiewicz, T. A., Aryl hydrocarbon receptor signaling plays a significant role in mediating benzo[a]pyrene- and cigarette smoke condensate-induced cytogenetic damage in vivo. Carcinogenesis, 22, 171-177 (2001) https://doi.org/10.1093/carcin/22.1.171
  7. Dickinson, D. A. and Forman, H. J., Cellular glutathione and thiols metabolism. Biochem. Pharmacal., 64, 1019-1026 (2002) https://doi.org/10.1016/S0006-2952(02)01172-3
  8. Filomeni, G., Rotilio, G., and Ciriolo, M. R., Cell signalling and the glutathione redox system. Biochem. Pharmacol., 64, 1057-1064 (2002) https://doi.org/10.1016/S0006-2952(02)01176-0
  9. Hayes, J. D. and McLellan, L. I., Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res., 31, 273-300 (1999) https://doi.org/10.1080/10715769900300851
  10. Jakobsson, P. J., Thoren, S., Morgenstern, R., and Samuelsson, B., Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc. Natl. Acad. Sci. U.S.A., 96, 7220-7225 (1999) https://doi.org/10.1073/pnas.96.13.7220
  11. Jeffery, E., Kotake, A., and Azhary, R. E., Effects of linoleic acid hydroperoxide on the hepatic monooxygenase systems of microsomes from untreated, phenobarbital-treated, and 3-methylcholanthrene-treated rats. Mol. Pharmacol., 13, 415-425 (1977)
  12. Jeong, H. G. and Lee, S. S., Suppressive effects of alpha-Hederin on 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated murine Cyp1a-1 expression in the mouse hepatoma Hepa-1c1c7 cells. Cancer Lett., 138, 131-137(1999) https://doi.org/10.1016/S0304-3835(98)00386-3
  13. Kang, Y. J., Exogenous glutathione attenuates the antipro-liferative effect of buthionine sulfoximine. Toxicology, 88, 177-189 (1994) https://doi.org/10.1016/0300-483X(94)90119-8
  14. Karuzina, I. I. and Archakov, A. I., Hydrogen peroxide-mediated inactivation of microsomal cytochrome P450 during mono-oxygenase reactions. Free Radic. Biol. Med., 17, 557-567 (1994) https://doi.org/10.1016/0891-5849(94)90095-7
  15. Keyse, S. M. and Tyrrell, R. M., Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci. U.S.A., 86, 99-103 (1989) https://doi.org/10.1073/pnas.86.1.99
  16. Kim, K. H., Lee, Y. S., Jung, I. S., Park, S. Y., Chung, H. Y., Lee, I. R., and Yun, Y. S., Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med., 64, 110-115 (1998) https://doi.org/10.1055/s-2006-957385
  17. Kumar Rajagopal, S., Manickam, P., Periyasamy, V., and Namasivayam, N., Activity of Cassia auriculata leaf extract in rats with alcoholic liver injury. J. Nutr. Biochem., 14, 452-458 (2003) https://doi.org/10.1016/S0955-2863(03)00053-6
  18. Lee, Y. S., Chung, I. S., Lee, I. R., Kim, K. H., Hong, W. S., and Yun, Y. S., Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic poly-saccharide ginsan isolated from Panax ginseng. Anticancer Res., 17, 323-331 (1997)
  19. Liang, H. C., Li, H., McKinnon, R. A., Duffy, J. J., Potter, S. S., Puga, A., and Nebert, D. W., Cyp1a2(-/-) null mutant mice develop normally but show deficient drug metabolism. Proc. Natl. Acad. Sci. U.S.A., 93, 1671-1676 (1996) https://doi.org/10.1073/pnas.93.4.1671
  20. Lim, D. S., Bae, K. G., Jung, I. S., Kim, C. H., Yun, Y. S., and Song, J. Y., Anti-septicaemic effect of polysaccharide from Panax ginseng by macrophage activation. J. Infect., 45, 32-38 (2002) https://doi.org/10.1053/jinf.2002.1007
  21. Liu, J., Liu, Y., Bullock, P., and Klaassen, C. D., Suppression of liver cytochrome P450 by alpha-hederin: relevance to hepatoprotection. Toxicol. Appl. Pharmacol., 134, 124-131 (1995) https://doi.org/10.1006/taap.1995.1175
  22. Locigno, R. and Castronovo, V., Reduced glutathione system: role in cancer development, prevention and treatment (review). lnt. J. Oncol., 19, 221-236 (2001)
  23. Maines, M. D. and Kappas, A., Prematurely evoked synthesis and induction of delta-aminolevulinate synthetase in neonatal liver. Evidence for metal ion repression of enzyme formation. J. BioI. Chem., 253, 2321-2326 (1978)
  24. Maines, M. D., Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J., 2, 2557-2268 (1988)
  25. Maines, M. D., The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol., 37, 517-554 (1997) https://doi.org/10.1146/annurev.pharmtox.37.1.517
  26. Moran, L. K., Gutteridge, J. M., and Quinlan, G. J., Thiols in cellular redox signalling and control. Curr. Med. Chem., 8, 763-772 (2001) https://doi.org/10.2174/0929867013372904
  27. Nebert, D. W. and Gonzalez, F. J., P450 genes: structure, evolution, and regulation. Annu. Rev. Biochem., 56, 945-993 (1987) https://doi.org/10.1146/annurev.bi.56.070187.004501
  28. Nebert, D. W. and Russell, D. W., Clinical importance of the cytochromes P450. Lancet, 360, 1155-1162 (2002) https://doi.org/10.1016/S0140-6736(02)11203-7
  29. Otterbein, L. E. and Choi, A. M. K., Heme oxygenase: colors of defense again'st cellular stress. Am. J. Physiol. Lung Cell Mol. Physiol., 279, L1029-L1037 (2000)
  30. Otterbein, L. E., Soares, M. P., Yamashita, K., and Bach, F. H., Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol., 24, 449-455 (2003) https://doi.org/10.1016/S1471-4906(03)00181-9
  31. Ozbek, H., Ugras, S., Dulger, H., Bayram, I., Tuncer, I., Ozturk, G. and Ozturk, A., Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoterapia, 74, 317-319 (2003) https://doi.org/10.1016/S0367-326X(03)00028-5
  32. Rahman, I. and MacNee, W., Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic. Biol. Med., 28, 1405-1420 (2000) https://doi.org/10.1016/S0891-5849(00)00215-X
  33. Renton, K. W., Hepatic drug metabolism and immunostimulation. Toxicology, 142, 173-178 (2000) https://doi.org/10.1016/S0300-483X(99)00142-0
  34. Ryter, S. W., Kvam, E., and Tyrrell, R. M., Heme oxygenase activity. Current methods and applications. Methods Mol. Biol., 99, 369-391 (2000)
  35. Ryter, S. W. and Tyrrell, R. M., The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic. BioI. Med., 28, 289-309 (2000) https://doi.org/10.1016/S0891-5849(99)00223-3
  36. Ryu, S. D. and Chung, W. G., Induction of the procarcinogen-activating CYP1A2 by a herbal dietary supplement in rats and humans. Food Chem. Toxicol., 41, 861-866 (2003) https://doi.org/10.1016/S0278-6915(03)00037-1
  37. Sasaki, N., Effects of furazolidone on duration of righting reflex loss induced with hexobarbital and zoxazolamine in the rat. J. Vet. Med. Sci., 56, 667-670 (1994) https://doi.org/10.1292/jvms.56.667
  38. Schacterle, G. R. and Pollack, R. L., A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal. Biochem., 51, 654-655 (1973) https://doi.org/10.1016/0003-2697(73)90523-X
  39. Schoene, B., Fleischmann, R. A., Remmer, H., and von Oldershausen, H. F., Determination of drug metabolizing enzymes in needle biopsies of human liver. Eur. J. Clin. Pharmacol., 4, 65-73 (1972) https://doi.org/10.1007/BF00562499
  40. Schuetz, E. G., Induction of cytochromes P450. Curr. Drug Metab., 2, 139-147 (2001) https://doi.org/10.2174/1389200013338595
  41. Sedlak, J. and Lindsay, R. H., Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal. Biochem., 25, 192-205 (1968) https://doi.org/10.1016/0003-2697(68)90092-4
  42. Sedlak, J. and Hanus, L., Changes of glutathione and protein bound SH-groups concentration in rat adrenals under acute and repeated stress. Endocrinol. Exp., 16, 103-109 (1982)
  43. Seubert, J. M., Webb, C. D., and Bend, J. R., Acute sodium arsenite treatment induces Cyp2a5 but not Cyp1a1 in the C57BI/6 mouse in a tissue (kidney) selective manner. J. Biochem. Mol. Toxicol., 16, 96-106 (2002) https://doi.org/10.1002/jbt.10023
  44. Shin, J. Y., Song, J. Y., Yun, Y. S., Yang, H. O., Rhee, D. K., and Pyo, S., Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacal. Immunotoxicol., 24, 469-482 (2002) https://doi.org/10.1081/IPH-120014730
  45. Song, J. Y., Han, S. K., Bae, K. G., Lim, D. S., Son, S. J., Jung, I. S., Yi, S. Y., and Yun, Y. S., Radioprotective effects of ginsan, an immunomodulator. Radiat. Res., 159, 768-774 (2003) https://doi.org/10.1667/0033-7587(2003)159[0768:REOGAI]2.0.CO;2
  46. Song, J. Y., Han, S. K., Son, E. H., Pyo, S. N., Yun, Y. S., and Yi, S. Y., Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int. Immunopharmacol., 2, 857-865 (2002) https://doi.org/10.1016/S1567-5769(01)00211-9
  47. Taketani, S., Kohno, H., Yoshinaga, T., and Tokunaga, R., The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase. FEBS Lett., 245, 173-176 (1989) https://doi.org/10.1016/0014-5793(89)80215-7
  48. Thapliyal, R. and Maru, G. B., Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food Chem. Toxicol., 39, 541-547 (2001) https://doi.org/10.1016/S0278-6915(00)00165-4
  49. Ueng, Y. F., Wang, J. J., Lin, L. C., Park, S. S., and Chen, C. F., Induction of cytochrome P450-dependent monooxygenase in mouse liver and kidney by rutaecarpine, an alkaloid of the herbal drug Evodia rutaecarpa. Life Sci., 70, 207-217 (2001) https://doi.org/10.1016/S0024-3205(01)01390-X
  50. Ueng, Y. F., Kuo, Y. H., Peng, H. C., Chen, T. L., Jan, W. C., Peter Guengerich, F., and Lin, Y. L., Diterpene quinone tanshinone IIA selectively inhibits mouse and human cytochrome p4501A2. Xenobiotica, 33, 603-613 (2003) https://doi.org/10.1080/0049825031000105769