Synthesis and Anticonvulsant Evaluation of N-Substituted-Isoindolinedione Derivatives

  • Published : 2004.05.01

Abstract

A series of N-substituted-1,3-isoindolinedione derivatives (2-16) were synthesized for the purpose of defining the effect of N-substitution on the anticonvulsant activity of these derivatives. The target compounds (2-16) were obtained by condensation of phthalic anhydride with the corresponding amine derivative. The structures of the synthesized derivatives (2-16) were confirmed by means of IR, $^1$H-NMR, $^{13}$ C-NMR, MS and elemental analyses. The anticonvulsant activity of all compounds (2-16) were evaluated by subcutaneous pentylenetetrazole seizure threshold test at doses of 0.2, 0.4 and 0.8 mmol/kg compared with sodium valproate as a positive control. Their neurotoxicity were determined by the rotorod test. Many of the present series of compounds showed good anticonvulsant activity at the tested doses, as compared to sodium valproate. Three of them (4, 6 and 11) exhibited 100 % protection against convulsions, neurotoxicity and death at all tested doses. Out of the series, two compounds (12 and 13) were completely inactive with 100% mortality. 3-(p-chlorophenyl)-4-(1 ,3-dioxo-2,3-dihydro-1 H-2-isoindolyl) butanoic acid derivative (11) has emerged as the most active compound which is 20 times more active than valproate with ED$_{50}$ 8.7, 169 mg/kg; TD$_{50}$ 413, 406 mg/kg and PI 47.5, 2.4. The results revealed the importance of the combination of baclofenic and phthalimide moieties (compound 11) as a promising anticonvulsant candidate.

Keywords

References

  1. Abd EI-Wahed, M. G., EI-Manakhly, K., Hammad, H., and Barakat, A., Electrical behaviour of some phthalimide derivatives and their complexes with transition metals. Bull. Korean Chem. Soc., 17, 285-288 (1996)
  2. AI-Soud, Y. A. and AI-Masoudi, N. A., Synthesis and antitumor activity of some new phthalimide analogues. Pharmazie, 56, 372-375 (2001)
  3. Bailleux, V., Vallee, L., Nuyts, J. P., Hamoir, G., Poupaert, J. H, Stables, J. P., and Vamecq, J., Compared the anticonvulsant activity and neurotoxicity of 4-amino-N-(2,6 dimethylphenyl) phthalimide and prototype antiepileptic drugs in mice and rats. Epilepsia, 36, 559-565 (1994a) https://doi.org/10.1111/j.1528-1157.1995.tb02567.x
  4. Bailleux, V., Vallee, L., Nuyts, J. P., and Vamecq, J., Synthesis and anticonvulsant of some N-phenylphthalimides. Chem. Pharm. Bull., 42, 1817-1821 (1994b) https://doi.org/10.1248/cpb.42.1817
  5. Bailleux, V., Vallee, L., Nuyts, J. P., and Vamecq, J., Original anticonvulsant properties of two N-phenylphthalimide derivatives. Biomed. Pharmacother., 47, 463-464 (1994c) https://doi.org/10.1016/0753-3322(93)90345-L
  6. Bailleux, V., Vallee, L., Nuyts, J. P., and Vamecq, J., Anti-convulsant activity of some 4-amino-N-phenylphthalimides and N-(3-amino-2-methylphenyl)phthalimides. Biomed. Pharmacother., 48, 95-101 (1995)
  7. Brownlee, K. A., Hodges, J. L., and Rosenblatt, M., The up and down method with small samples. American Statistical Association Journal, 262-277 (1953)
  8. Bruce, R. D., An up and down procedure for acute toxicity testing. Fundamental and Applied Toxicology, 5, 151-157 (1985) https://doi.org/10.1016/0272-0590(85)90059-4
  9. Chapman, J. M., Jr., Cocolas, G. H., and Hall, I. H., Hypolipidemic activity of phthalimide derivatives. 1. N-substituted phthalimide derivatives. J. Med. Chem., 22, 1399-1402(1979) https://doi.org/10.1021/jm00197a022
  10. Chapman, J. M., Jr., Cocolas, G. H., and Hall, I. H., Hypolipidemic activity of phthalimide derivatives. IV: Further chemical modification and investigation of the hypolipidemic activity of N-substituted imides. Journal of Pharmaceutical Sciences, 72,1344-1347 (1983) https://doi.org/10.1002/jps.2600721127
  11. Chapman, J. M, Jr., Wyrick S. D., Voorstad P. J., Maguire, G. H., Cocolas, G. H., and Hall, I. H., Hypolipidemic activity of phthalimide derivatives. V: Reduced and hydrolytic products of simple cyclic amides. Journal of Pharmaceutical Sciences, 73, 1482-1484 (1984) https://doi.org/10.1002/jps.2600731041
  12. Dunham, N. W. and Miya, T. S., A note on a simple apparatus for detecting neurological deficit in rats and mice. Journal of the American Pharmaceutical Association, XLVI, 208-209 (1957)
  13. Hall, I. H., Voorstad P. J., Chapman, J. M, and Cocolas, G. H., Antihyperlipidemic activity of phthalimide analogues in rodents. Journal of Pharmaceutical Sciences, 72, 845-851 (1983) https://doi.org/10.1002/jps.2600720803
  14. Hashimoto, Y., Novel biological response modifiers derived from thalidomide. Curr. Med. Chem., 5, 163-178 (1998)
  15. Hashimoto, Y. , Structural development of biological response modifiers based on thalidomide. Bioorg. Med. Chem., 10, 461-479 (2002) https://doi.org/10.1016/S0968-0896(01)00308-X
  16. Leo, A. J., Calculating log $P_{oct}$ from structures. Chem. Rev., 63,1281-1306(1993)
  17. Maryanoff, B. E., Costanzo, M. J., Nortey, S. O., Greco, M. N., Shank, R. P., Schupsky, J. J., Ortegon, M. P., and Vaught, J. L., Structure-activity studies on anticonvulsant sugar sulfamates related to topiramate. Enhanced potency with cyclic sulfate derivatives. J. Med. Chem., 41, 1315-1343 (1998) https://doi.org/10.1021/jm970790w
  18. Miyachi, H., Azuma, A., Kitamoto, T., Hayashi, K., Kato, S., Koga, M., Sato, B., and Hashimoto, Y., Potent novel nonsteroidal androgen antagonists with a phthalimide skeleton. Bioorg. Med. Chem. Lett., 7, 1483-1488 (1997) https://doi.org/10.1016/S0960-894X(97)00249-7
  19. Moore, M. B. and Rapala, R. T., N-alkamine substituted phthalimides. J. Amer. Chem. Soc., 68, 1657-1658 (1946) https://doi.org/10.1021/ja01212a089
  20. Pandeya, S. N., Aggarwal, N., and Jain, J. S., Evaluation of semicarbazones for anticonvulsant and sedative-hypnotic properties. Pharmazie, 54, 300-302 (1999 )
  21. Shibata, Y., Shichita, M., Sasaki, K., Nishimura, K., Hashimoto, Y., and Iwasaki, S., N-alkylphthalimides: Structural requirements of thalidomidal action on 12-O- tetradecanoylphorbol-13-acetate induced tumor necrosis factor a production by human leukemia HL-60 cells. Chem. Pharm. Bull., 43, 177-179(1995) https://doi.org/10.1248/cpb.43.177
  22. Shimazawa, R., Miyachi, H., Takayama, H., Kuroda, K., Kato, F., Kato, M., Hashimoto, Y., Antiangiogenic activity of tumor necrosis factor-${\alpa}$-production regulators derived from thalidomide. BioI. Pharm. Bull., 22, 224-226 (1999) https://doi.org/10.1248/bpb.22.224
  23. Sou, S., Mayumi, S., Takahashi, H., Yamasaki, R., Kadoya, S., Sodeoka M., and Hashimoto, Y., Novel ${\alpa}$-glucosidase inhibitors with a tetrachlorophthalimide skeleton. Bioorg. Med. Chem. Lett., 10, 1081-1084(2000) https://doi.org/10.1016/S0960-894X(00)00161-X
  24. Swinyard, E. A., 'Assay of antiepileptic drug activity in experimental animals' Standard tests in 'Anticonvulsant drugs, International encyclopedia of Pharmacology and therapeutics' section 19, volume 1, Ed. By J. Mercier, Pergamon press, Oxford/New York. pp 47-65 (1972)
  25. Takahashi, H., Sou, S., Yamasaki, R., and Sodeoka, M., Hashimoto Y. ${\alpha}$-Glucosidase inhibitors with a phthalimide skeleton: Structure-activity relationship study. Chem. Pharm. Bull., 48, 1494-1499 (2000). https://doi.org/10.1248/cpb.48.1494
  26. Usifoh, C. O., Lambert, D. M., Wouters, J., and Scriba, G. K., Synthesis and anticonvulsant activity of N,N-phthaloyl derivatives of central nervous system inhibitory amino acids. Arch. Pharm., 334, 323-331 (2001) https://doi.org/10.1002/1521-4184(200110)334:10<323::AID-ARDP323>3.0.CO;2-O