Dithiothreitol Attenuates the Pathogenic Interaction Between Pseudomonas aeruginosa and Drosophila melanogaster

  • Lee, Ji-Sun (Department of Life Science, Sogang University) ;
  • Kim, Seol-Hee (Department of Life Science, Sogang University) ;
  • Cho, You-Hee (Department of Life Science, Sogang University)
  • Published : 2004.04.01

Abstract

Infection of Drosophila melanogaster adults with Pseudomonas aeruginosa (PA14) can kill the flies within 48h. We found that the virulence of PA14 was significantly attenuated when treated with a reducing agent, dithiothreitol (DTT), prior to infection. Infection with DTT-treated PA14 elevated Metchnikowin expression at 22 h post-infection and the virulence of DTT-treated PA14 was not attenuated in Dif and Relish mutants. These results suggest that DTT pre-treatment of PA14 can aggravate certain virulence factors that may be required to paralyze fly immune responses, triggering Metchnikowin expression via Dif and Relish activations.

Keywords

References

  1. Cell. v.87 NF-kB: Ten years after Baeuerle,P.A.;D.Baltimore https://doi.org/10.1016/S0092-8674(00)81318-5
  2. Infect Immun. v.71 Legionella pneumophila catalase-peroxidases are required for proper trafficking and growth in primary macrophages Bandyopadhyay,P.;B.Byrne;Y.Chan;M.S.Swanson;H.M.Steinman https://doi.org/10.1128/IAI.71.8.4526-4535.2003
  3. Mol. Microbiol. v.47 Siderophore-mediated cell signalling in Pseudomonas aeruginosa: Divergent pathways regulate virulence factor production and siderophore receptor synthesis Beare,P.A.;R.J.For;L.W.Martin;I.L.Lamont https://doi.org/10.1046/j.1365-2958.2003.03288.x
  4. Nature v.237 Inducible antibacterial defence system in Drosophila Boman,H.G.;I.Nilsson;B.Rasmuson https://doi.org/10.1038/237232a0
  5. J.Bacteriol. v.184 Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system Cosson,P.;L.Zulianello;O.Join-Lambert;F.Faurisson;L.Gebbie;M.Benghezal;C. Van Delden;L.K.Curty;T.Kohler https://doi.org/10.1128/JB.184.11.3027-3033.2002
  6. J. Bacteriol. v.183 Drosophila model host for Pseudomanas aeruginosa infection D'Argenio,D.A.;L.A.Gallagher;C.A.Berg;C.Manoil https://doi.org/10.1128/JB.183.4.1466-1471.2001
  7. Am. J. Hum. Genet. v.62 Drosophila immune responses as models for human immunity Dushay,M.S.;E.D.Eldon https://doi.org/10.1086/301694
  8. Microb. Pathog. v.32 Role an activation of type Ⅲ secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing Fauvarque,M.O.;E.Bergeret;J.Chabert;D.Dacheux;M.Satre;I.Attree https://doi.org/10.1006/mpat.2002.0504
  9. Infect. Immun. v.71 DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors Ha,U.H.;Y.Wang;S.Jin https://doi.org/10.1128/IAI.71.3.1590-1595.2003
  10. Mol. Cell. v.4 Relish, a central factor in the control of humoral but not cellular immunity in Drosophila Hedengren,M.;B.Asling;M.Dushay;I.Ando;S.Ekengren;M.Wihlborg;D.Hultmark https://doi.org/10.1016/S1097-2765(00)80392-5
  11. Adv. Microb. Physiol. v.46 The extracytoplasmic function (ECF) sigma factors Helmann,J.D. https://doi.org/10.1016/S0065-2911(02)46002-X
  12. Science v.284 Phylogenetic perspectives in innate immunity Hoffmann,J.A.;F.C.Kafatos;C.A.Janeway;R.A.Ezekowitz https://doi.org/10.1126/science.284.5418.1313
  13. Science v.296 Pseudomonas-Candida interactions: An ecological role for virulence factors Hogan,D.A.;R.Kolter https://doi.org/10.1126/science.1070784
  14. J. Bacteriol. v.182 Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects Jander,G.;L.G.Rahme;F.M.Ausubel https://doi.org/10.1128/JB.182.13.3843-3845.2000
  15. J. Biol. Chem. v.260 Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron Kim,K.;S.G.Rhee;E.R.Stadtman
  16. J. Microbiol. Biotechnol. v.13 Genome diversification by phage-derived genomic islands in Pseudomonas aeruginosa Kim,S.H.;K.B.Lee;J.S.Lee;Y.H.Cho
  17. Nat. Rev. Genet. v.2 The evolution and genetics of innate immunity Kimbrell,D.A.;B.Beutler https://doi.org/10.1038/35066006
  18. Infect. Immun. v.71 The Drosophila melanogaster toll pathway participates in resistance to infection by gram-negative human pathogen Pseudomonas aeruginosa Lau,G.W.;B.C.Goumnerov;C.L.Walendziewicz;J.Hewitson;W.Xiao;S.Mahajan-Miklos;R.G.Tompkins;L.A.Perkins;L.G.Rahme https://doi.org/10.1128/IAI.71.7.4059-4066.2003
  19. J. Mol. Biol. v.278 Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide Metchnikowin Levashina,E.A.;S.Ohresser;B.Lemaitre;J.L.Imler https://doi.org/10.1006/jmbi.1998.1705
  20. Mol. Microbiol. v.37 Elucidating the molecular mechanism of bacterial virulence using non-mammalian hosts Mahajan-Miklos,S.;L.G.Rahme;F.M.Ausubel https://doi.org/10.1046/j.1365-2958.2000.02056.x
  21. EMBO J. v.12 H₂O₂ and antioxidants have opposite effects on activation of NF-kB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor Meyer,M.;R.Schreck;P.A.Baeuerle
  22. J. Microbiol. Biotechnol. v.12 Glycolipid biosurfactants produced by Pseudomonas aeruginosa D2D2 from diesel-contaminated soil Moon,H.J.;Y.K.Lim;H.S.Kim;D.Y.Kwon;W.J.Chung
  23. Science v.268 Common virulence factors for bacterial pathogenicity in plants and animals Rahme,L.G.;E.J.Stevens;S.F.Wolfort;J.Shao;R.G.Tompkins;F.M.Ausubel https://doi.org/10.1126/science.7604262
  24. Immunity. v.12 The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila Rutschmann,S.;A.C.Jung;C.Hetru;J.M.Reichhart;J.A.Hoffmann;D.Ferrandon https://doi.org/10.1016/S1074-7613(00)80208-3
  25. EMBO J. v.10 Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1 Schreck,R.;P.Rieber;P.A.Baeuerle
  26. Genes Dev. v.15 NF-kR signaling pathways in mammalian and insect innate immunity Silverman,N.;T.Maniatis https://doi.org/10.1101/gad.909001
  27. Proc. Natl. Acad. Sci. USA v.96 Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors Tan,M.W.;L.G.Rahme;J.A.Sternberg;R.G.Tompking;F.M.Ausubel https://doi.org/10.1073/pnas.96.5.2408
  28. Proc. Natl. Acad. Sci. USA v.99 Constitutive expression of a single antimicrobial peptide can Drosophia mutants Tzou,P.;J.M.Reichhart;B.Lemaire https://doi.org/10.1073/pnas.042411999
  29. Mol. Microbiol. v.46 Differential accumulation of Salmonella [Cu,Zn] superoxide dismutases SodCI and SodCⅡ in intracellular bacteria: Correlation with their relative contribution to pathogenicity Uzzau,S.;L.Bossi;N.Figueroz-Bossi https://doi.org/10.1046/j.1365-2958.2002.03145.x
  30. Mol. Microbiol. v.16 Repair, refold, recycle: How bacteria can deal with spontaneous and environmental damage to proteins Visick,J.E.;S.Clarke https://doi.org/10.1111/j.1365-2958.1995.tb02311.x
  31. Mol. Microbiol. v.41 The roles of mucD an alginate in the virulence of Pseudomonas aeruginosa in plants, nematods and mice Yorgey,P.;L.G.Rahme;M.W.Tan;F.M.Ausubel https://doi.org/10.1046/j.1365-2958.2001.02580.x