References
- Hydrobiologia v.474 Rainfall, phycocyanin, and N:P ratios related to cyanobacterial blooms in a Korean large reservoir Ahn,C.Y.;A.S.Chung;H.M.Oh https://doi.org/10.1023/A:1016573225220
- Standard Methods for the Examination of Water and Wastewater(19th ed.) American Public Health Association (APHA);American Water Works Association (AWWA);Water Pollution Control Federation (WPCF)
- J. Microbiol. Biotechnol. v.13 Differential responses of three cyanobacteria to UV-B and Cd Atri,N.;L.C.Rai
- Nature v.380 Role of protozoan grazing in relieving iron limitation of phytoplankton Barbeau,K.;J.W.Moffett;D.A.Caron;P.L.Croot;D.L.Erdner https://doi.org/10.1038/380061a0
- Microalgae: Biotechnology and Microbiology Becker,E.W.
- Science v.283 Widespread iron limitation of phytoplankton in the South Pacific Ocean Behrenfeld,M.J.;Z.S.Kolber https://doi.org/10.1126/science.283.5403.840
- Nature v.383 Confirmation of iron limitation of phytoplankton photosynthesis in the Equatorial Pacific Ocean Behrenfeld,M.J.;A.J.Bale;Z.S.Kolber;J.Aiken;P.G.Falkowski https://doi.org/10.1038/383508a0
- Nature v.383 A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean Coale,K.H.;K.S.Johnson;S.E.Fitzwater;R.M.Gordon;S.Tanner;F.P.Chavez;L.Ferioli;C.Sakamoto;P.Rogers;F.Millero;P.Steinberg;P.Nightingale;D.Cooper;W.P.Cochlan;M.R.Landry;J.Constantinou;G.Rollwagen;A.Trasvina;R.Kudela https://doi.org/10.1038/383495a0
- Environ. Sci. Technol. v.32 Oxidation kinetics of Fe(Ⅱ) in a eutrophic Swiss lake Emmenegger,L.;D.W.King;L.Sigg;B.Sulzberger https://doi.org/10.1021/es980207g
- Limnol. Oceanogr. v.42 Relative importance of iron and molybdenum in restricting phytoplankton biomass phosphorus saline lakes Evans,J.C.;E.E.Prepas https://doi.org/10.4319/lo.1997.42.3.0461
- Detection Methods for Cyanobacterial Toxins Health problems from exposure to cyanobacteria and proposed safety guidelines for drinking and recreational water Falconer,I.R.;G.A.Codd(ed.);T.M.Jefferies(ed.);C.W.Keevil(ed.);E.Potter(ed.)
- Appl. Environ. Microbiol. v.65 Cooccurrence of elevated ureal levels and dinoflagellate blooms in temperate estuarine aquaculture ponds Glibert,P.M.;D.E.Terlizzi
- Appl. Environ. Microbiol. v.61 Oligotrophic bacteria enhance algal growth under irondeficient conditions Keshtacher-Liebson,E.;Y.Hadar;Y.Chen
- J. Microbiol. Biotechnol. v.12 Bioaccumulation of chromium ions by immobilized cells of a filamentous cyanobacterium, Anabaena variabilis Khattar,J.I.S.;T.A.Sarma;D.P.Singh;A.Sharma
- Limnoecology: The Ecology of Lakes and Streams Lampert,W.;U.Sommer
- Nature v.382 Flavodoxin as an in situ marker for iron stress in phytoplankton La Roche, J.;P.W.Boyd;R.M.L.McKay;R.J.Geider https://doi.org/10.1038/382802a0
- Toxicon v.31 Influence of trace metals on growth and toxin production of Microcystic aeruginosa Lukac,M.;R.Aegerter https://doi.org/10.1016/0041-0101(93)90147-B
- The Ecology of Cyanobacteria: Their Diversity in Time and Space Detecting the environment Mann,N.H.;B.A.Whitton(ed.);M.Potts(ed.)
- Biology of Freshwater Pollution(2nd ed.) Mason,C.F.
- Plant Physiol. v.114 Physiological and biochemical response of the photosynthetic apparatus of two marine diatoms to Fe stress McKay,R.M.L.;R.J.Geider;J. La Roche https://doi.org/10.1104/pp.114.2.615
- Limnol. Oceanogr. v.10 The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation Menzel,D.W.;N.Corwin https://doi.org/10.4319/lo.1965.10.2.0280
- Limnol. Oceanogr. v.36 Limitation of productivity by trace metals in the sea Morel,M.M.F.;R.J.R.Hudson;N.M.Price https://doi.org/10.4319/lo.1991.36.8.1742
- Mar. Ecol. Prog. Ser. v.130 Effects of nitrogen source on the physiology and metal nutrition of Emiliania huxleyi grown under different iron and light conditions Muggli,D.L.;P.J.Harrison https://doi.org/10.3354/meps130255
- J. Phycol. v.14 On spectral control of pigmentation in Anacystis Anacystis nidulans (Cyanophyceae) Myers,J.;J.R.Graham;R.T.Wang https://doi.org/10.1111/j.1529-8817.1978.tb02478.x
- Appl. Environ. Microbiol. v.62 Effect of metal cations on the viscosity of a pectin-like capsular polysaccharide from the cyanobacterium Microcystis flos-aquae C3-40 Parker,D.L.;B.R.Schram;J.L.Plude;R.E.Moore
- Appl. Environ. Microbiol. v.63 Potassium salts inhibit growth of the cyanobacteria Microcystis spp. in pond water and defined media: Implications for control of microcystin-producing aquatic blooms Parker,D.L.;H.D.Kumar;L.C.Rai;J.B.Singh
- Appl. Environ. Microbiol. v.57 Chemical characterization of polysaccharide from the slime layer of th cyanobacterium Microcystis flos-aquae C3-40 Plude,J.L.;D.L.Parker;O.J.Schommer;R.J.Timmerman;S.A.Hagstrom;J.M.Joers;R.Hnasko
- Limnol. Oceanogr. v.33 Manganese oxidation in pH and O₂ microenvironments produced by phytoplankton Richardson,L.;C.Aguilar;K.Non https://doi.org/10.4319/lo.1988.33.3.0352
- Mar. Chem. v.36 Redox conditions and alkalinity generation in a seasonally anoxic lake (Lake Greifen) Sigg,L.;C.A.Johnson;A.Kuhn https://doi.org/10.1016/S0304-4203(09)90051-2
- Biometry: The Principles and Practice of Statistics in Biological Research Sokal,R.R.;F.J.Rohlf
- The Molecular Biology of Cyanobacteria v.Ⅰ Iron deprivation: physiology and gene regulation Straus,N.A.;D.A.Bryant(ed.)
- Lakes: Chemistry, Geology, Physics Man-made chemical perturbation of lakes Stumm,W.;P.Baccini;A.Lerman(ed.)
- Environ. Sci. Technol. v.18 Photoreductive dissolution of colloidal iron oxides in natural waters Waite,T.D.;F.M.M.Morel https://doi.org/10.1021/es00129a010
- Can. J. Fish. Aquat. Sci. v.42 Chloroform-methanol extraction of chlorophyll-a Wood,L.W. https://doi.org/10.1139/f85-005