K:Fe Ratio as an Indicator of Cyanobacterial Bloom in a Eutrophic Lake

  • Ahn, Chi-Yong (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Dae-Kyun (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hee-Sik (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Chung, An-Sik (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Oh, Hee-Mock (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2004.04.01

Abstract

The effects of potassium, sodium, calcium, magnesium, and iron on cyanobacterial bloom potentials were investigated in Daechung Reservoir, Korea. Potassium showed the highest correlation with the cyanobacterial cell number (r=0.487, P<0.05) and phycocyanin concentration (r=0.499, P<0.05). However, it was not likely that the potassium had directly affected the bloom formation, because the variations of its concentration were not significantly large. In contrast, the Fe concentration fluctuated drastically and exhibited a negative correlation with the cyanobacterial cell number (r=- 0.388, P<0.1) and phycocyanin concentration (r=-0.446, P<0.05). Accordingly, the K:Fe atomic ratio would appear to reflect the extent of cyanobacterial bloom more precisely than K or Fe alone. The K:Fe ratio specifically correlated with cyanobacterial percentage, the cyanobacterial cell number and phycocyanin concentration (r=0.840, P<0.001; r=0.416, P<0.05; r=0.522, P<0.01, respectively). With the K:Fe atomic ratio of over 200, the chlorophyll-a concentration, cyanobacterial cell number, and phycocyanin concentration exceeded $10\mu$g $1^{-1}$20,000 cells $ml^{-1}$, and 20 pM, respectively, the general criteria of eutrophic water.

Keywords

References

  1. Hydrobiologia v.474 Rainfall, phycocyanin, and N:P ratios related to cyanobacterial blooms in a Korean large reservoir Ahn,C.Y.;A.S.Chung;H.M.Oh https://doi.org/10.1023/A:1016573225220
  2. Standard Methods for the Examination of Water and Wastewater(19th ed.) American Public Health Association (APHA);American Water Works Association (AWWA);Water Pollution Control Federation (WPCF)
  3. J. Microbiol. Biotechnol. v.13 Differential responses of three cyanobacteria to UV-B and Cd Atri,N.;L.C.Rai
  4. Nature v.380 Role of protozoan grazing in relieving iron limitation of phytoplankton Barbeau,K.;J.W.Moffett;D.A.Caron;P.L.Croot;D.L.Erdner https://doi.org/10.1038/380061a0
  5. Microalgae: Biotechnology and Microbiology Becker,E.W.
  6. Science v.283 Widespread iron limitation of phytoplankton in the South Pacific Ocean Behrenfeld,M.J.;Z.S.Kolber https://doi.org/10.1126/science.283.5403.840
  7. Nature v.383 Confirmation of iron limitation of phytoplankton photosynthesis in the Equatorial Pacific Ocean Behrenfeld,M.J.;A.J.Bale;Z.S.Kolber;J.Aiken;P.G.Falkowski https://doi.org/10.1038/383508a0
  8. Nature v.383 A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean Coale,K.H.;K.S.Johnson;S.E.Fitzwater;R.M.Gordon;S.Tanner;F.P.Chavez;L.Ferioli;C.Sakamoto;P.Rogers;F.Millero;P.Steinberg;P.Nightingale;D.Cooper;W.P.Cochlan;M.R.Landry;J.Constantinou;G.Rollwagen;A.Trasvina;R.Kudela https://doi.org/10.1038/383495a0
  9. Environ. Sci. Technol. v.32 Oxidation kinetics of Fe(Ⅱ) in a eutrophic Swiss lake Emmenegger,L.;D.W.King;L.Sigg;B.Sulzberger https://doi.org/10.1021/es980207g
  10. Limnol. Oceanogr. v.42 Relative importance of iron and molybdenum in restricting phytoplankton biomass phosphorus saline lakes Evans,J.C.;E.E.Prepas https://doi.org/10.4319/lo.1997.42.3.0461
  11. Detection Methods for Cyanobacterial Toxins Health problems from exposure to cyanobacteria and proposed safety guidelines for drinking and recreational water Falconer,I.R.;G.A.Codd(ed.);T.M.Jefferies(ed.);C.W.Keevil(ed.);E.Potter(ed.)
  12. Appl. Environ. Microbiol. v.65 Cooccurrence of elevated ureal levels and dinoflagellate blooms in temperate estuarine aquaculture ponds Glibert,P.M.;D.E.Terlizzi
  13. Appl. Environ. Microbiol. v.61 Oligotrophic bacteria enhance algal growth under irondeficient conditions Keshtacher-Liebson,E.;Y.Hadar;Y.Chen
  14. J. Microbiol. Biotechnol. v.12 Bioaccumulation of chromium ions by immobilized cells of a filamentous cyanobacterium, Anabaena variabilis Khattar,J.I.S.;T.A.Sarma;D.P.Singh;A.Sharma
  15. Limnoecology: The Ecology of Lakes and Streams Lampert,W.;U.Sommer
  16. Nature v.382 Flavodoxin as an in situ marker for iron stress in phytoplankton La Roche, J.;P.W.Boyd;R.M.L.McKay;R.J.Geider https://doi.org/10.1038/382802a0
  17. Toxicon v.31 Influence of trace metals on growth and toxin production of Microcystic aeruginosa Lukac,M.;R.Aegerter https://doi.org/10.1016/0041-0101(93)90147-B
  18. The Ecology of Cyanobacteria: Their Diversity in Time and Space Detecting the environment Mann,N.H.;B.A.Whitton(ed.);M.Potts(ed.)
  19. Biology of Freshwater Pollution(2nd ed.) Mason,C.F.
  20. Plant Physiol. v.114 Physiological and biochemical response of the photosynthetic apparatus of two marine diatoms to Fe stress McKay,R.M.L.;R.J.Geider;J. La Roche https://doi.org/10.1104/pp.114.2.615
  21. Limnol. Oceanogr. v.10 The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation Menzel,D.W.;N.Corwin https://doi.org/10.4319/lo.1965.10.2.0280
  22. Limnol. Oceanogr. v.36 Limitation of productivity by trace metals in the sea Morel,M.M.F.;R.J.R.Hudson;N.M.Price https://doi.org/10.4319/lo.1991.36.8.1742
  23. Mar. Ecol. Prog. Ser. v.130 Effects of nitrogen source on the physiology and metal nutrition of Emiliania huxleyi grown under different iron and light conditions Muggli,D.L.;P.J.Harrison https://doi.org/10.3354/meps130255
  24. J. Phycol. v.14 On spectral control of pigmentation in Anacystis Anacystis nidulans (Cyanophyceae) Myers,J.;J.R.Graham;R.T.Wang https://doi.org/10.1111/j.1529-8817.1978.tb02478.x
  25. Appl. Environ. Microbiol. v.62 Effect of metal cations on the viscosity of a pectin-like capsular polysaccharide from the cyanobacterium Microcystis flos-aquae C3-40 Parker,D.L.;B.R.Schram;J.L.Plude;R.E.Moore
  26. Appl. Environ. Microbiol. v.63 Potassium salts inhibit growth of the cyanobacteria Microcystis spp. in pond water and defined media: Implications for control of microcystin-producing aquatic blooms Parker,D.L.;H.D.Kumar;L.C.Rai;J.B.Singh
  27. Appl. Environ. Microbiol. v.57 Chemical characterization of polysaccharide from the slime layer of th cyanobacterium Microcystis flos-aquae C3-40 Plude,J.L.;D.L.Parker;O.J.Schommer;R.J.Timmerman;S.A.Hagstrom;J.M.Joers;R.Hnasko
  28. Limnol. Oceanogr. v.33 Manganese oxidation in pH and O₂ microenvironments produced by phytoplankton Richardson,L.;C.Aguilar;K.Non https://doi.org/10.4319/lo.1988.33.3.0352
  29. Mar. Chem. v.36 Redox conditions and alkalinity generation in a seasonally anoxic lake (Lake Greifen) Sigg,L.;C.A.Johnson;A.Kuhn https://doi.org/10.1016/S0304-4203(09)90051-2
  30. Biometry: The Principles and Practice of Statistics in Biological Research Sokal,R.R.;F.J.Rohlf
  31. The Molecular Biology of Cyanobacteria v.Ⅰ Iron deprivation: physiology and gene regulation Straus,N.A.;D.A.Bryant(ed.)
  32. Lakes: Chemistry, Geology, Physics Man-made chemical perturbation of lakes Stumm,W.;P.Baccini;A.Lerman(ed.)
  33. Environ. Sci. Technol. v.18 Photoreductive dissolution of colloidal iron oxides in natural waters Waite,T.D.;F.M.M.Morel https://doi.org/10.1021/es00129a010
  34. Can. J. Fish. Aquat. Sci. v.42 Chloroform-methanol extraction of chlorophyll-a Wood,L.W. https://doi.org/10.1139/f85-005