Gluconacetobacter persimmonis sp. nov., Isolated from Korean Traditional Persimmon Vinegar

  • Yeo, Soo-Hwan (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • Lee, Oh-Seuk (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • Lee, In-Seon (The Center for Traditional Microorganism Resources, Keimyung University,Department of Food Science and Technology, Keimyung University) ;
  • Kim, Hyun-Soo (The Center for Traditional Microorganism Resources, Keimyung University,Department of Microbiology, Keimyung University) ;
  • Yu, Tae-Shick (The Center for Traditional Microorganism Resources, Keimyung University,Department of Microbiology, Keimyung University) ;
  • Jeong, Yong-Jin (The Center for Traditional Microorganism Resources, Keimyung University,Department of Food Science and Technology, Keimyung University)
  • Published : 2004.04.01

Abstract

Screening was performed to isolate cellulose-producing microorganisms from the Korean traditional fermented persimmon vinegar. The resulting strain, KJ $145^{T}$, was then taxonomically investigated by phenotypic characterization, particularly chemotaxonomic, and by phylogenetic inference based on a 16S rDNA sequence analysis including other related taxa. Strain KJ $145^{T}$ was found to grow rapidly and form pale white colonies with smooth to rough surfaces on a GYC agar. Strain KJ $145^T$ also produced acetate from ethanol, and was tolerable to 10% ethanol in SM medium. In a static culture, a thick cellulose pellicle was produced, and in GYC broth, the strain grew at temperatures ranging from 28 to $40^\circ{C}$ with an optimum pH of 4.0. The genomic DNA G+C content of strain KJ $145^T$ was 61.9 mol%, and the predominant ubiquinone was Q 10 as the major quinone and Q9 as the minor quinone. The major cellular fatty acids were $C_{16:0}$ and the sum in feature 7 ($C_{18:1}$ w9c, w12t and/or w7c). A 16S rRNA-targeted oligonucleotide probe specific for strain KJ $145^T$was constructed, and the phylogenetic position of the new species was derived from a 16S rDNA-based tree. When comparing the 16S rDNA nucleotide sequences, strain KJ $145^T$ was found to be most closely related to G. hansenii LMG $1527^T$ (99.2%), although KJ $145^T$ was still distinct from G. hansenii LMG $l527^T$ and G. xylinus LMG $1515^T$ in certain phenotypic characteristics. Therefore, on the basis of 16S rDNA sequences and taxonomic characteristics, it is proposed that strain KJ $145^T$ should be placed in the genus Gluconacetobacter as a new species, Gluconacetobacter persimmonis sp. nov., under the type-strain KJ $145^T$ (=KCTC =$10175BP^T$=KCCM=$10354^T$).

Keywords

References

  1. J. Gen. Appl. Microbiol. v.10 The flagellation and taxonomy of the genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains Asai,T.;K.Iizuka;K.Komagata https://doi.org/10.2323/jgam.10.95
  2. Syst. Appl. Microbiol. v.21 Acetobacter intermedius sp. nov. Boescht,C.;J.Trcek;M.Sievers;M.Teuber https://doi.org/10.1016/S0723-2020(98)80026-X
  3. J. Mol. Biol. v.148 Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli Brosius,J.;T.J.Dull;D.D.Sleeter;H.F.Noller https://doi.org/10.1016/0022-2836(81)90508-8
  4. Bergey's Manual of Systematic Bacteriology v.1 De Ley, J.;M.Gillis;J.Swing
  5. PHYLIP: Phylogeny inference package(version 3.5) Felsenstein,J.
  6. Int. J. Syst. Bacteriol. v.39 Acetobacter diazotrophius sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugracane Gillis,M.;K.Kersters;B.Hoste;D.Janssens;R.M.Kroppenstedt;M.P.Stephan;K.R.S.Teixeira;J.Dobereiner;J. De Ley https://doi.org/10.1099/00207713-39-3-361
  7. Syst. Appl. Microbiol. v.4 Numerical analysis of phenotypic features and protein gel electrophoregrams of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215 Gossels',F.;J.Swings;K.Kersters;P.Pauwels;J. De Ley https://doi.org/10.1016/S0723-2020(83)80020-4
  8. Mammalian Protein Metabolism v.3 Evolution of Protein Molecules Jukes,T.H.;C.R.Cantor
  9. Color: Universal Language and Dictionary of Names. Special publication 440 Kelly,K.L;D.B.Judd
  10. Int. J. Syst. Bacteriol. v.45 A phylogenetic analysis of the genus Saccharomonospora conducted with 16S rRNA gene sequences Kim,S.B.;J.H.Yoon;H.Kim;S.T.Lee;Y.H.Park;M.Goodfellow https://doi.org/10.1099/00207713-45-2-351
  11. J. Microbiol. Biotechnol. v.9 Effect of gluconic acid on the prodution of cellulose in Acetobacter xylinum BRC5 Park,S.T.;T.S.Song;Y.M.Kim
  12. Biochim. Biophys. Acta v.72 Preparation of transforming deoxyribonucleic acid by phenol treatment Saito,H.;K.Miura https://doi.org/10.1016/0006-3002(63)90288-9
  13. Mol. Biol. Evol. v.4 The neighbor-joining method: A new method for reconstructing phylogenetic trees Saito,N.;M.Nei
  14. Int. J. Syst. Bacteriol. v.16 Method for characterization of Streptomyces species Shirling,E.B.;D.Gottlieb https://doi.org/10.1099/00207713-16-3-313
  15. Syst. Appl. Microbiol. v.15 Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe Sievers,M.;S.Sellmer;M.Teuber https://doi.org/10.1016/S0723-2020(11)80212-2
  16. Int. J. Syst. Bacteriol. v.48 Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations Sokollek,S.J.;C.Hertel;W.P.Hammes https://doi.org/10.1099/00207713-48-3-935
  17. J. Microbiol. Biotechnol. v.12 Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures Son,C.J.;S.J.Chung;J.E.Lee;S.J.Kim
  18. Handbook of New Bacterial Systematics Nucleic acids and classification Stackebrandt,E.;W.Liesack
  19. The Prokaryotes: A Handbook on the Biology of Bacteria-Ecophysiology, Isolation, Identification, Applications v.3 The genera Acetobacter and Gluconobacter Swings,J.
  20. Identification Methods in Applied and Environmental Microbiology. Tech. Ser. v.29 Phenotypic identification of acetic acid bacteria Swings,J.;M.Gillis;K.Kersters
  21. Int. J. Syst. Bacteriol. v.48 Gordonia rhizosphera sp. nov. isolated from the mangrove rhizosphere Takeuchi,M.;K.Hatano https://doi.org/10.1099/00207713-48-3-907
  22. J. Appl. Microbiol. v.54 Analysis of bacterial menaquinone mixtures by high performance liquid chromatography Tamaoka,J.;Y.Katayama-Fujimura;H.Kuraishi https://doi.org/10.1111/j.1365-2672.1983.tb01297.x
  23. FEMS Microbiol. Lett. v.25 Determination of DNA base composition by reverse-phase hight-performance liquid chromatography Tamaoka,J.;K.Komagata https://doi.org/10.1111/j.1574-6968.1984.tb01388.x
  24. Biosci. Biotechnol. Biochem. v.64 Genetic characteristics of cellulosle-forming acetic acid bacteria identified phenotypically as Gluconacetobacter xylinus Tanaka,M.;S.Murakami;R.Shinke;K.Aoki https://doi.org/10.1271/bbb.64.757
  25. Nucleic. Acids Res. v.22 CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choic Thompson,J.D.;D.G.Higgins;T.J.Gibson https://doi.org/10.1093/nar/22.22.4673
  26. J. Gen. Appl. Microbiol. v.41 The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: The proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov. Toyosaki,H.;Y.Kojima;T.Tsuchida;K.I.Hoshino;Y.Yamada;F.Yoshinaga https://doi.org/10.2323/jgam.41.307
  27. Int. J. Syst. Bacteriol. v.36 Actions of the Judicial Commission of the International Committee on Systematic Bacteriology on requests for opinions published in 1983 and 1984 Wayne,L.G. https://doi.org/10.1099/00207713-36-2-357
  28. Biosci. Biotechnol. Biochem. v.61 The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of the subgenus Gluconoacetobacter to the generic level Yamada,Y.;K.Hoshino;T.Ishikawa https://doi.org/10.1271/bbb.61.1244
  29. J. Gen. Appl. Micorbiol. v.29 Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less acetate-oxidizing acetic acid bacteria with the Q-10 system Yamada,Y. https://doi.org/10.2323/jgam.29.417
  30. Int. J. Syst. Evol. Microbiol. v.50 Transfer of Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boescht 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. Yamada,Y. https://doi.org/10.1099/00207713-50-6-2225
  31. J. Gen. Appl. Microbiol. v.19 Coenzyme Q system in the classification of the yeast genera Rhodotorula and Cryptococcus, and the yeast genera Sporobolomyces and Rhodosporidium Yamada,Y.;K.Kondo https://doi.org/10.2323/jgam.19.59
  32. Int. J. Syst. Bacteriol. v.47 Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains Yoon,J.H.;S.T.Lee;S.B.Kim;W.Y.Kim;M.Goodfellow;Y.H.Park https://doi.org/10.1099/00207713-47-1-111