DOI QR코드

DOI QR Code

Acoustic Levitation and Rotation Produced by Ultrasonic Flexural Vibration

초음파 굽힘 진동에 의한 음향 부상 및 회전

  • Loh, Byoung-Gook (Department of Mechanical Systems Engineering, Hansung University)
  • Published : 2004.05.01

Abstract

Acoustic levitation induced by ultrasonic flexural vibration at 28.4 KHz with a vibration amplitude of 10 micrometers is presented. Levitation of multiple objects along the length of the beam in a gap of 8.3 mm which is the half of acoustic wavelength is experimentally demonstrated. Analytical analysis predicts that levitated objects for the gap of half-the wavelength converges to the center of the gap, which is experimentally verified. It is observed that levitated objects with well-balanced mass distribution are set into rotation due to acoustic streaming. For cylinder-shaped Styrofoam with a diameter of 1.8 mm and a length of 3 mm, measured rotational velocity is 2400 revolution per minute. Applications of standing wave field levitation (SWFL) include manipulation of biological cells and blood constituents in biotechnology, and fine powder in material engineering.

10 마이크로미터의 진폭을 갖는 28.4 KHz의 초음파 굽힘진동을 이용하여 초음파 진동판과 정지판 사이에서 다수의 소형 실린더 형태의 스티로폼를 진동판의 길이 방향으로 안정적으로 부양시켰다. 진동자와 정지판의 간격이 음향파장 (16.6 mm)의 1/2일 경우, 부양된 물체가 음향파장의 1/4 지점에서 안정적으로 부양되는 이유를 이론적으로 증명하였으며, 또한 실험적으로 검증하였다. 질량이 균형적으로 분포된 물체의 경우 부양시 고속으로 회전하게 되는데 이는 초음파 진동에 의해서 생성된 음향유동에 의한 것이다. 지름 1.8 mm, 길이 3 mm의 실린더 형태의 스티로폼의 경우 2400 rpm 으로 회전하는 것이 실험적으로 관찰되었다. 음향부양은 작은 세포나 혈액내의 구성체 혹은 미세 분진의 조작에 응용될 수 있다.

Keywords

References

  1. IEEE Ultrasonics Symposium Ultrasonic actuators using near field acoustic levitation Usha,S.;Hashimoto,Y.;Koike,K.
  2. Ultrasonic World Congress Proceedings Near-field acoustic levitation using flexural vibration mode Ueha,S.;Hanhimoto,Y.;Koike,K.
  3. J. Acoust. Soc. Jpn(E) v.16 no.3 Acoustic levitation of planar objects using a longitudinal vibration mode Ueha,S.;Hashimoto,Y.;Koike,K.
  4. J. Acoust. Soc. Am v.100 no.4 Near-field acoustic levitation of planar specimens using flexural vibration Hashimoto,Y.;Koike,Y.;Ueha,S. https://doi.org/10.1121/1.417915
  5. Jpn. J. Appl. Phys. v.34 no.5B Translation of an Object Using Phase Controlled Sound Sources in Acoustic Levitation Matsui,T.;Ohdaira,E.;Masuzawa,N.;Ide,M. https://doi.org/10.1143/JJAP.34.2771
  6. 5th Int. Sympo. Micro Machine & Human Science Proc. Acoustic Manipulation of Micro Objects Using an Ultrasonic Staanding Wave Kozuka,T.;Tuziuti,T.;Mitome,H.;Fukuda,T.
  7. 6th Int. Sympo. Micro Machine & Human Science Proc. One dimensional Transportation of Particles Using an Ultrasonic Standing wave Kozuka,T.;Tuziuti,T.;Mitome,H.;Fukuda,T.
  8. J. Acoust. Soc. Am v.111 no.2 Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer Loh,B.G.;Hyun,S.;Ro,P.;Kleinstreuer,C. https://doi.org/10.1121/1.1433811
  9. Wave Motion in Elastic Solid Graff,K.F.
  10. J. of Acoust. Soc. Am. v.88 no.5 Outer acoustic streaming Lee,C.P.;Wang,T.G.
  11. J. of Sound and VIb v.61 no.3 acoustic streaming Lighthill,J. https://doi.org/10.1016/0022-460X(78)90388-7
  12. J. of Acoust. Soc. Am. v.30 no.4 acoustic streaming near a Boundary Nybrog,W.L. https://doi.org/10.1121/1.1909587
  13. J. of Acoust. Soc. Am. v.25 no.5 acoustic streaming at High Reynolds Numbers Amdres.J.M.;Ingard,U. https://doi.org/10.1121/1.1907220
  14. Fundamentals of Acoustics Kinsler,L.E.;Frey,A.R.;Coppens,A.B.;Sanders,J.V.