AT}, A 15 A A 1 5, 2004

Extended LR Methods for Efficient Parsing
with Feature-based Grammars

of 2§
(Kang-Hyuk Lee)

2 o 2 =R AF7P Byl IR 9 Hold 443 B¥e T 7hA] BAHE =odnh o
A A7 BYel IR 5 e AEY A dAdske vIFEY R A8 EAE 4N F
o] EAE 2% & Ut LR PPE AN G £F o HolEL Aslde FET HRE 7HA
A Fahe 9A FH o EAHE AT, olyfd FAEL R B WeR AL F U=F
e FAFE duES AR

Abstract This paper discusses two problems with LR parsing with regard to constructing parsing tables
with feature-based grammars. First, we show that traditional LR parsing methods suffer from nontermination
and nondeterminism problems when they are applied to feature-based grammars. We then present an LR
method for feature-based grammars that avoids both nontermination and nondetermisim by making use of
partial information of a feature structure. Second, we describe the problem of adapting LR pamsing to
feature-based grammars with schematic rules (i.e., rules that do not contain enough information to construct
parsing tables). To remedy this problem, we propose a rule inference algorithm which instantiates

underspecified rules into more specified ones containing enough information.

1 Introduction

With the currency of feature-based grammar formalisms,
various parsing methods such as Earley-style chart parsing
{13) and Left-corner parsing [15] have been used for natural
language processing with them. In this paper, we propose an
extended LR-parsing algorithm as an alternative parsing
method for efficient parsing with feature-based grammars.

In chapter 2, we present the preliminary algorithm for
constructing sets of LR(0) items, and discuss a critical
problem with LR-parsing, i.e., the nontermination problem that
arises from using feature-based categories. In chapter 3, we

f R APE 2000dE SRHARNER
ato] g

** Department of Game Engineering
Tongmyong University of Information Technology

sl Aol o

provide an intermediate algorithm which gets around the
problem addressed in section 3.1, and state another problem
of “nondeterminism” even with the extended algorithm given
in chapter 2. Chapter 4 presents the complete parsing table
construction algorithm for feature-based grammars that avoids
both nontermination an nondeterminism by making use of
partial information of a feature structure. Chapter 5 discusses
a problem with LR-parsing caused by underspecified grammar
productions which the radical lexicalization of the grammar

-brings about [6, 11, 12], and provides an algorithm for rule

inference that tumns schematic grammar rules into more
specified ones so that the parsing table construction algorithm
correctly collects sets of items. The brief summary and
conclusion of the paper is given in chapter 6.

26 #Z AFHES =2 A B A A1 T

2 ltem Set Construction with
Feature-based Grammars (1)

2.1 Preliminary Algorithm for Constructing
Sets of ltems

With a grammar with monadic categories, i.e., a pure CFG,
sets of items are constructed by consulting categories in LHS
and RHS of grammar productions. Given the grammar rules
in {Figure 1], the CLOSURE function will compute all
possible items (i.e., dotted productions) from an item, say, S
— ® NP VP, as shown in [Figure 2].

S~ NP VP
NP — Det N
NP — NP PP
NP — NP RelCl
VP — V NP
RelCl — RelPro VP

{Figure 1] Example Productions

S —~>eNP VP
NP — e Det N
NP — ¢ NP PP
NP — o NP RelCl
[Figure 2] Items created from the production S — NP VP

With feature-based grammar productions, however, this kind
of prediction is no longer possible because unlike monadic
categories, a new item is added only if there is a grammar
production whose LHS is wmifiable with the right-of-dot
category from which the new prediction is made. The need
for umification in predicting items is mainly because in
feature-based grammars, categories of the same kind may be

[~ —] []

maj:s maj:np maj:vp

—

head:(1) case:nom head-(1)
l— L. _ L]
— — —

. _ _—1 .
maj:np maj:n
maj:det
head:(1) head:(1)

{Figure 3] Feature-based Grammat Productions

different in their internal feature structures. Let us consider
the feature-based grammar productions in [Figure 3}, which
roughly correspond to the first two rules in figure 1. The tags
@, @, ...
features tagged by the same integer share their values. As can
be clearly seen, the NP feature structure in the RHS of the
first production differs from the NP feature structure in the
LHS of the second production in which case is unspecified.
Thus, if the NP in the RHS is the right-of-dot category, we
need to unify the feature structure of this category with the
feature structure of the LHS category in the second
production.

The preliminary CLOSURE/GOTO functions in which
unification plays a central role in predicting items are given in
{Figure 4]. (U indicates the unification operator.) The revised
CLOSURE function unifies with the LHS of a production to
be predicted (i.e., C =» 7) with the category from which that
prediction is made (i.e., B). Notice that the newly created
item is not C = 7, but C U B =» § which is the result of
unification. 7 is also changed to &, because C may be
reentrant with respect to some member(s) of 7.

etc. indicate reemtrancy, which means that

procedure CLOSURE())
begin
repeat

for each item [A— a*Bf), in I, each production C = 7y

such that C is unifiable with Band [C U B < ¢4} is
not in I do
add [C U B = e8] to [

until no more items can added to I
return [
end

procedure GOTO(I, C)

begin

let J be the set of items [A— a X® S], such that
[A— aeX (] is in I, and X is unifiable with C;
return CLOSURE()

end

[Figure 4) LR(O) CLOSURE/GOTO functions for feature-based
grammars

With this revised algorithm, we are now able to construct
dotted productions through unification as in [Figure 5]. Note

Extended LR Methods for Efficient Parsing with Feature-based Grammars

|—:aj:v

27

rmaj:s _‘ maj:np rmaj:vp —’
—>
head:(1) case:nom head:(1)
L | - 1
T - —
maj:np
maj:n
case:nom — maj:detj
head:(1)
head.:(1)
L —

[Figure 5] Items created from the right-of-the-dot category NP

that the LHS of the second item which is predicted from the
right-of-the-dot category in the first item is instantiated to
have the case feature, which is the result of unifying with the
right-of-the-dot category.

2.2 Nontermination Problem

Shieber [13] discusses the nomtermination problem that
arises when we try to apply standard parsing methods to
feature-based grammar formalisms. For example, the
straightforward adaptation of Earley’s algorithm to those
formalisms which allow for infinite nonterminal domains (e.g.,
list-valued subcategorization in HPSG (Head-driven Phrase
Structure Grammar [11, 12] and PATR-style grammars [14])
or slashed functor categories in CUG (Categorial Unification
Grammar) [11, 18]) leads to nontermination during parsing.

The same problem arises with LR-parsing algorithms,
which make top-down predictions in terms of preprocessing of
grammars. They fail to terminate at compile time. Given the
grammar production in [Figure 6], for instance, the relevant
syntactic category that is unifiable with the LHS of the
production will create the first item (or prediction) in [Figure
7). Since the right-of-the-dot category of this item itself is

-

)
|

maj:v maj:vp

subcat:(1)

head:(1)

[Figure 6] Example Grammar Production

‘ —> o subcar: |first:(2) 2
subcat:(1) head:(1)
rest:(1)
1_)
maj:;y —]
subcat: first e
case:acc B ‘
rest:nil
L= —
maj:v ‘ -
=l maj.'vp_‘
o subcar: |first:(2) ’ (2) l
head:(1)
rest:(1) l — J

|-

[Figure 7] Items created from the production in figure 7

wnifiable with the LHS of the given grammar production, it
predicts the second item in [Figure 7], and thus the loop in
the CLOSURE function generates an infinite number of new
items from the same grammar production.

3 Item Set Construction with
Feature-based Grammars (ll)

3.1 Intermediate Algorithm for Constructing
Sets of ltems

Shieber [13] proposes a technique called “restriction” as a
workaround to this problem. Although he demonstrates this
technique with the Predictor step of Earley’s algorithm, he
also suggests that it could be used for LR-parsing algorithms
to guarantee the termination of the LR closure function, which
can be thought of as a precompiled version of Earley’s
Predictor.) Nakazawa [10] proposed an extended LR
algorithm that the unification
constructing the parsing table of a grammar. Another way of

uses operation while

1) See Aho and Johnson {1] for the similarity between Earley's
algorithm and the LR algorithm.

28 g2 QXA =22 A B HEALE

avoiding nontermination during preprocessing of grammars is
to predict dotted productions without instantiation of grammar
productions through unification. With this method, unification
only serves to check if an item to be predicted is legitimate.
The revised CLOSURE/GOTO procedures are given in
[Figure 8]. It differs only from the algorithm in the previous
chapter in adding newly created items without instantiation
through unification, thus preventing the CLOSURE function
from falling into a left-recursion trap.

procedure CLOSURE(])
begin
repeat
for each item [A— @ ®B], in [, each production C=»y
such that C is unifiable with B and [C=»® 7] is not
in I do
add [C>e7] to [;
until no more items can added to [
return [/
end

procedure GOTO(I, C)

begin

let J be the set of items [A— a X® 3], such that
[A—a®XB] is in I, and X is unifiable with C,
return CLOSURE())

end

[Figure 8] LR(0) CLOSURE/GOTO functions (Revised)

Given the first item in [Figure 7], the CLOSURE function
will try to predict another item, since the right-of-the-dot
category is unifiable with the LHS of the grammar production.
However, this new item will not be added because the same
dotted production is already in the cument set of items.
Although the CLOSURE/GOTO functions in [Figure 8] get
around the nontermination problem, they reveal another
problem of nondeterminism, which we focus on in the next

section.

3.2 Source of Nondeterminism

The LR(0) CLOSURE functions given in [Figure 8] avoid
the nontermination problem by adding dotted productions
without instantiating grammar rules through unification,

LR-parsing with feature-based grammars, however, faces
another problem of nondeterminism that does not arise with
grammars using atomic categories. In PATR-style grammars,
verbs are often distinguished by subcategori-zation frames, but
not by category labels. Suppose that a grammar has the two
VP rules in [Figure 9] which roughly correspond to ordinary
context-free rules VP =» V and VP =» V NP.

— maj:v maj:np ll —[‘T
maj:vp first: ! i
—> | subcat: case:nom | |
subcat:(1) - _yJ
second:none
maj:vp N
subcat:(1)
majy —
first:(2)
subcat:
maj:np
(2
case:acc
second:(1)
[Figure 9] Example Grammar Productions
state np v[np] vinp,np] $ vp[np] s[]
0 sh2 1
1 acc
2 shd sh5 3
3 rel
4 re2
5 shé
6 re3

[Figure 10} LR Parsing Table

In the construction of the parsing table, these two rules will
lead to two separate shift actions in the parsing table, both of
which start at the same state but result in difference states, as

Extended LR Methods for Efficient Parsing with Feature-based Grammars 29

shown in [Figure 10).2)

The problem with feature-based grammars is that we cannot
consult the parsing table deterministically. In shifting the verb
loves in John loves Mary onto the stack, for example, the parser
sees two possible entries in the parsing table. Unlike parsing
tables with atomic categories, we cannot deterministically choose
one of these two because the preterminals in the parsing table
in [Figure 10] are partially instantiated by the CLOSURE
function, while the verb loves contains the full-fledged feature
structure, part of which might be absent from the corresponding
preterminal in the parsing table. Thus, it is only after unification
test with these two preterminals that the parser shifts loves onto
the stack and proceeds to the desired state. This kind of
nondeterminism, which goes against the spirit of LR-parsing, has
significant effects on the efficiency of the parser because the
unification operation is expensive.

4 Parsing Table Construction with
Feature-based Grammars

We avoid the nondeterminism problem by utilizing partial
information of a feature structure, specifically part-of-speech
information, when predicting items. This requires modification
of the GOTO function. As shown in the GOTO function in
[Figure 8], moving the dot is made possible by unification
test. Since sleeps and loves carry different subcategorization
frames, they are considered to be different categories, which
means that they are to be treated by separate GOTO
functions. We modify the GOTO function in [Figure 8] to
embed categories of the same kind into a single GOTO action
when the parser attempts to move the dot. Taking the
grammar rules in [Figure 9] as an example, we make use of
the maj path which specifies part-of-speech information. Given
the revised GOTO function in [Figure 11], we are able to put
into the same set of items the two items in which the dot has
been moved to the right of the verb, even though the two
verbs carry different subcategorization frames.3)

2) The category labels in the parsing table abbreviate the corresponding
feature structures. The lists of category labels represent
subcategorized-for elements to be saturated.

3) The way to encode part-of-speech information varies. The maj
feature is used in HPSG. In Categorial Grammar, it is expressed
in terms of category symbols and directional slashes. Hence,
MAJ in the revised GOTO function should be regarded as a
function representing the part-of-speech information in various
grammar formalisms. MAJ can be easily fine-tuned depending on

procedure CLOSURE()
begin
repeat
for each item [A— a*B /], in I, each production C-¥y
such that C is unifiable with B and [C =»® 7] is not
in I do
add [C =<¥®7y] to [,
until no more items can added to [
return /
end

procedure GOTO(I,)

begin

let J be the set of items [A— a Xe 8], such that

[A—>a*XB is in I, and MAJ(X) = C,

such that MAJ(X) is the path in X containing part-of-speech
information;

return CLOSURE(

end

[Figure 11] The Final CLOSURE/GOTO functions

GOTO(, [maj v]): vplnp] vinp)]
vplnp2] vinpinp2] nplnpi]

[Figure 12] GOTO function on I

One might argue that the nondeterminism problem remains
because the parser has to choose between two possible actions
after pushing a verb. If there are no words left to be pushed,
the elements in the stack should be reduced to S. Otherwise,
the parser has to shift another NP onto the stack. This is still
true if we rely on unification to determine the next action
(i.e., unifying the feature structure of the current word with
the feature structure(s) the state indicates in the table). As can
be inferred from [Figure 12}, however, what we put into the
parsing table is MAJ (i.e., [maj V] in this particular case). If
we put v[np] and v{np,np] into the parsing table, the GOTO
function in [Figure 11] is vacuous. It will result in the two

the grammar formalism adopted.

30 BT QARG =N A B A AL S

separate entries whose current and next states are the same. A
look at the parsing table construction algorithm will make this
point easy to understand. Unlike the original formulation in
Aho and Ullman [2], the right-of-the-dot category « in [A—
a®a] is not identified with X in GOTO(J, X). Rather, we
check if the MAJ of the right-of-the-dot category is the same
as X in GOTO(/ X). Then, we put X = MAJ(a) in the
parsing table rather than the whole feature structure of a.
Therefore, when the parser tries to shift a word, it uniquely
matches the current state and the MAJ of the word with an
entry in the parsing table.

(1) If A~ aea B] is in I, GOTO(;, MAJ(a)) = I,

Q2 If [A—ael is I,
then set ACTION[i, MAJ(2)] to “reduce A—a" for
all @ in FOLLOW(A).

3 I [S'—S9 is in I,
then set ACTION[i, $] to “accept”.

(4 GOTO(, A) =, then GOTO[;, A] = j.

(5) All entries not defined by rules (1) through (4) are
made “error”.

(6) The initial state of the parser is the one constructed
from the set of items containing [S'— S ®].

[Figure 13] Parsing Table Construction Algorithm for Feature-based
Grammars

This revised table construction algorithm in which
part-of-speech information plays a central role enables us to
consult the parsing table deterministically without any
unification work. A question that arises is how we can deal
with other parts of the feature structure that are crucial to
determine the grammaticality of sentences. For example, if we
solely depend on the parsing table to parse sentences, there is
no way to block sentences such as John love Mary in which
subject-verb agreement is violated. Unlike standard LR-parsing
algorithms for grammars with monadic categories, the
structure of a sentence in feature-based grammars is built by
way of unification. When the parser tries to reduce a verb
phrase and a noun phrase to a sentence, for insiance, the
parsing table only tells which rule to apply, and nothing more
than that. The feature structure of a sentence is built through
unification of the NP and VP feature structures with the
designated rule. It is through this unification operation that the

parser detects the subject-verb agreement violation, if any.
This is a significant departure from standard LR-parsing
methods in which the structure of a sentence is built in terms
of putting elements popped out of the stack under the
category symbol they reduce to. Emors are only detected by
entries not defined in the parsing table. In our LR-parsing
method, however, errors are also detected when building a
constituent structure through unification. Thus, a significant
amount of work is relegated to the driver routine in our
parser. The parsing table still guides the parser efficiently in
terms of assigning a correct action as it proceeds.

5 LR Parsing and Schematic Rules

5.1 Problem with Schematic Rules

In current lexically-based grammars such as HPSG
(Head-driven Phrase Structure Grammar) {3, 11, 12] and CUG
(Categorial ~ Unification Grammar) [9, 18], grammar
productions are highly schematic. In HPSG, for example, the
grammar has only a few rule schemata. In this respect, CUG
goes to the extreme. In CUG, only a couple of functional
operations are required as grammar rules. In either case, there
are no construction-specific grammar rules, and almost all the
grammatical information is pushed in the lexicon.

This lexicalization of grammar, often called radical
lexicalism, makes it very difficult to apply LR parsing to
those grammar formalisms, since grammar productions are too
underspecified for the LR parsing algorithm to correctly close
sets of items. An example from categorial grammar will
illustrate this problem. Let us assume CG to have only tow
functional operations as grammar productions.

X—=XY Y
X—-Y XY

np — {John, Mary|
s\np — sleeps
(s\np)/np — loves

[Figure 14] Example Categorial Grammar

Given the grammar in [Figure 14], the partial sets of items
will be like those in figure 15. The second item in Jp will
result in the set of items I, by virtue of the GOTO function.
The parsing table construction algorithm will eventually put a
shift entry (0, X/Y, 1) in the action table from the second
item in I, and GOTO(l, X/Y) = L. With the grammar in
[Figure 14], a sentence cannot begin with a lexical item

Extended LR Methods for Efficient Parsing with Feature-based Grammars 31

This shows that the
straightforward application of the LR pamsing method to

whose category is a functor.

underspecified rules does not guarantee that the correct sets of
items will be constructed.

{

I [s LIN
[X— XY Y]
[X— Y X\Y)

I; = GOTOd o, S):

[S — SeNP]

L = GOTO(», X/Y): [X— XYeY]
[X— eXY Y]

[X—=.oY XY]

[Figure 15] Sets of Items

5.2 Rule Inference

As seen in the previous section, the LR parsing method
does not lend itself to predicting items with undetspecified
grammar rules as in lexicalized grammars such as HPSG and
CUG. To remedy this problem, we propose a rule inference
algorithm that supplements the LR parsing table comstruction
algorithm. The main idea is that the rule inference system
instantiates underspecified rules into more specified ones
containing enough information to correctly close sets of items.
This naturally leads to an increase in the number of grammar
rules, which often increases the size of the parsing table
substantially. Jt might look a bit ugly from the theoretical
standpoint, but it does not cause problems with respect to
efficiency because the table size does not affect parsing time.

Rule inference depends on partial feature structures of
lexical iterns (roughly speaking, the set of preterminals). To
begin with, the inference algorithm instantiates underspecified
rules with the partial preterminal feature structures extracted
fiom the lexicon according to a "restrictor”.9 Then it goes on
to infer higher levels of rules (i.e., rules whose daughters can
dominate the mother categories of previously inferred rules)

4) Shieber [13] originally proposed restriction to ensure a
terminating algorithm for feature-based grammars. The restrictor
(ie., a finite set of paths) in rule inference serves the same
purpose. If we make use of the complete set of lexical entries
as preterminals, the inference algorithm will not terminate when
it tries to instantiate underspecified rules with infinite
nonterminal domains.

from these initially inferred rules until it gets to sentence-level
rules. The rule inference algorithm is given in [Figure 16],
where Uindicates the unification operation.

procedure RULE-INFERENCE (R)
begin
let N be the set of nonterminals according to a restrictor,
R the set of grammar productions, and
R the set of inferred grammar productions
such that it is initially empty;

repeat
for each grammar production
[X Xi .. %) in R do

for each daughter xx do
for each nonterminal nt in N do

R =[x .x Untl]
for each set of productions
{p1, P o , pu} in 11 r do
rer’

add P to R” such that
P is the result of ptUp,U.. Upy;
add the restricted LHS of P to N,
until no more productions can be added to R
return R"
end,

[Figure 16} Rule Inference Algorithm

N initially denotes the set of partial preterminal feature
structure according to a restrictor, and is augmented with the
mother categories of inferred rules as the loop goes on
Informally stated, the inference algorithm generates the cross
product of sets, each of which contains the results of
instantiating a daughter in a rule with available nonterminal
feature structures. If each element in each set in the product
is unifiable with others, then the result of unification is added
to the inventory of inferred rtules. For example, the
PATR-style [14] rule schema in [Figure 17] in which x2
subcategorizes for xI is instantiated as productions responsible
for generating noun phrase, sentence, etc. in the sense of
phrase structure grammars. Assuming that a
subcategorizes for a determiner, the rule schemata is first
expanded as NP by way of unifying its daughters with Det
and Noun. (More precisely, the step involves unifying each

noun

32 33 AAGE =FA A B A A1 E

daughter of the rule schemata with preterminal feature
structures. The inferred rule is the result of unifying each
partially instantiated rule with others) Then, the mother
category of this inferred rule, ie., NP is added to the set of
nonterminal feature structures N. This NP is also used to infer
the S rule with VP to be inferred from V and NP. The two
inferred rules are given in [Figure 18].% Note that NP and S
are realized as feature structures whose maj value respectively
is n and v, but which do not subcategorize for anything, ie.,
which are saturated.

x0 x1 x2
<x0 maj> = <x2 maj>
<x0 subcat> = <x2 subcat rest>
<x2 subcat first> = <x1>
<x2 subcat rest> = nil
[Figure 17] Sample Rule Schemata

x0 = x1 x2

<x0 maj> = <x2 maj>

<x0 subcat> = <x2 subcat rest>
<x2 maj> = n

<x2 subcat first> = <x1>

<x2 subcat first maj> = det
<x2 subcat rest> = nil

x0 — x1 x2
<x0 maj> = <x2 maj>
<x0 subcat> = <x2 subcat rest>
<x2 maj> = v
<x2 subcat first> = <x1>
<x2 subcat first maj> = n
<x2 subcat rest> = nil
[Figure 18] Inferred Rules

The mule inference algorithm works bottom-up, initially
unifying the daughters of each schematic rule with possible
preterminal feature structures. If these initial instantiations
succeed, the set of possible mother category (i.e., the feature
structure for the LHSs of schematic rules (again, according to

5) It should be noted that with a categorial grammar including
general type-raising rules such as X/(X\Y) Y, the inference
algorithm will not terminate. However, it is common practice in
CG to use more restricted types of raising rules such as
S/(S\NP) NP instead of general raising rules.

a restrictor)) will be obtained which are used for inferring
higher levels of rules. As described above, after unifying the
feature structures for Det and N with the daughters of the
schematic rule in [Figure 17], the LHS of the rule has n as its
value for maj, because the maj value of the mother (i.e., x0)
is reentrant with that of the second daughter (ie., x2).
However, the mother category is distinguished from the
daughter by the degree of saturation in subcategorization. The
way of instantiating schematic rules assumes that a rule must
be defined in such a way that after instantiations of daughter
categories, the inference algorithm will get the mother
category specific enough to instantiate other possible rules.
Let us consider the schematic rule in [Figure 19], which is
identical with the rule in [Figure 17] except that the
information on the maj feature is missing.

x0 —x1 x2
<x0 subcat> = <x2 subcat rest>
<x2 subcat first> = <x1>
<x2 subcat rest> = nil
[Figure 19] Example Rule Schemata

Although the algorithm is still able to unify Det and N
with the daughters, the feature structure of the LHS still
remains quite underspecified because the result of unification
does not lead to the LHS with the part-of-speech information
specified. Underspecified LHS categories of this kind causes
problem with the table construction algorithm which relies on
the part-of-speech information to collect sets of items. From
the practical point of view, it is not likely that we nun into
this kind of problem. It seems unlikely that we would have a
grammar rule such that we camnot decide what the mother
category of the rule is, after fully expanding its daughters
with relevant information. Chances are that the part-of-speech
information of each category in a rule is independently
specified or some information on the relations between
categories is specified (e.g., via reentrancy). Nevertheless, the
rule schema in [Figure 19] is a legitimate rule according to
the PATR formalism, and the inference algorithm cannot
handle rule schemata of the kind properly. Thus, the
application of the rule inference algorithm is limited to the
class of grammars where categories involved in a rule contain
the information defined by a restrictor independently or
indirectly (ie., by reentrancy). This ensures that after

Extended LR Methods for Efficient Parsing with Feature-based Grammars 33

instantiating the RHS categories of a rule, the LHS category
will also have necessary information used for instantiating

other rules.

6 Summary and Conclusion

We have discussed two problems with LR parsing with
regard to constructing parsing tables with feature-based
grammars. First, we have shown that the blind application of
LR methods to feature-based grammars causes the problems
of nontermination and nondeterminism. To get around these
problems, we have proposed a new LR method that does ot
bring about nontermination and nondetermisim, Second, we
have described the problem of adapting LR parsing to
feature-based grammars with schematic rules. To remedy this
problem, we have proposed a rule inference algorithm which
instantiates underspecified rules into more specified ones
containing enough information to cortectly close sets of items.

The LR method for feature-based grammars that we have
proposed is important in that it enables us to maintain the
efficiency of LR parsing without worrying about the problems
of nontermination and non-determinism. The rule inference
algorithm is also important in the viewpoint of grammar
writing. It frees the grammar writer from unnecessary
computational considerations that are not directly relevant to
the grammar formalism adopted. The grammar writer can be
faithful to the grammar formalism he/she adopts (he/she can
make a grammar as much general as hefshe wants.), and the
inference engine will take care of everything else so that the
LR algorithm correctly close sets of items.

References

[} Aho, A V. and S. C Johnson 1974 LR parsing'.
Computing Surveys, 6(2):99-124.

[2] Aho, A V. and]. D. Ullman 1977. Principles of Compiler
Design. Addison Wesley, Reading, MA,

[3] Bouma, Gosse, Frank Van Eynde & Dan Flickinger 2000.
"Constraint-based Lexica", in Frank Van Eynde and
Dafydd Gibbon, Lexicon Development for Speech and
Language Processing, Kluwer Academic Publishers,
Dordrecht-Boston-London, pp. 43-75.

4] Briscoe, T. and] Carroll 1993 . "Generalized
Probabilistic LR Parsing of Natural Language

{(Corpora) with Unification-based ~ Grammars".,
Computational Linguistics, 19(1): 25-57.

[5] Earey, J. 1970 “An Efficient Context-Free Parsing
Adgorithm". Communications of the ACM, 13(2):94-102.

[6] Karttunen, L. 1986. "Radical Lexicalism'. Paper presented
at the Conference on Alternative Conception of Phrase
Structure.

[7] Kindermann and Meier 1988. "An Extension of
LR-Parsing for Lexical Functional Grammar". In U.
Reyle and C. Rohrer, editors, Natural Language Parsing
and Linguistic Theories, 131-148. Reidel, Dordrecht.

{8] Kipps, J. R 1991 "GLR Parsing in Time O(r)". In M.
Tomita, editor, Generalized LR Parsing, 43-59, Kluwer,
Dordrecht.

[9 Milward, D. 1995. ‘Incremental Interpretation of
Categorial Grammar". Proceedings of EACL 95,
119-216.

[10] Nakazawa, Tsuneko. 1991. "An Extended LR Parsing
Algorithm for Gramwars Using Feature-based
Syntactic Categories". Proceedings of the ACL, European
Chapter, 69-74.

(11] Pollard, C and I Sag 1987. Information-based Syntax and
Semantics. Volume 1: Fundamentals. CSLI, Starford, CA.

[12] Pollard, C. and I Sag 199%4. Head-driven Phrase Structure
Grarmrmar. CSLI Stanford, CA.

(13] Shieber, 5. 1985. "Using Restriction to Extend Parsing
Algorithms for Complex-feature-based Formalisms”.
Proceedings of ACL, 145-152.

114] Shieber, S. 1986. An Introduction to Unification-Based
Approaches to Grammar. CSLI, Stanford, CA.

[15] Shieber, S. and F. Pereira 1987, Prolog and Natural
Longuage Analysis. (5L, Stanford, CA.

[16] Torrita, M. 1986. Efficient Parsing for Natural Language: A
Fast Algorithm for Practical Systems. Kluwer Academic
Press, Boston, MA.

[17] Tomita, M. 1987. "An Efficient Augmented Context-Free
Parsing Algorithm". Computational Linguistics, 13(1-2):
1-46.

[18] Uzkoreit, H 1986, “Categorial Unification Grammar”,
Proceedings of Coling ‘86, 187-1%4.

