Removal of Arsenite and Arsenate by a Sand Coated with Colloidal Hematite Particl

나노 크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거

  • 고일원 (광주과학기술원 환경공학과 지질환경비소제어 국가지정연구실) ;
  • 이상우 (광주과학기술원 환경공학과 지질환경비소제어 국가지정연구실) ;
  • 김주용 (광주과학기술원 환경공학과 지질환경비소제어 국가지정연구실) ;
  • 김경웅 (광주과학기술원 환경공학과 지질환경비소제어 국가지정연구실) ;
  • 이철효 ((주)오이코스)
  • Published : 2004.03.01

Abstract

Hematite-coated sand was examined for the application of the PRB (permeable reactive barrier) to the arsenic-contaminated subsurface in the metal mining areas. The removal efficiency of As in a batch and a flow system was investigated through the adsorption isotherm, removal kinetics and column experiments. Hematite-coated sand followed a linear adsorption isotherm with high adsorption capacity at low level concentrations of As (<1.0 mg/L). In the column experiments, high content of hematite-coated sand enhanced the removal efficiency, but the amount of the As removal decreased due to the higher affinity of As (V) than As (III) and reduced adsorption kinetics in the flow system. Therefore. the amount of hematite-coated sand, the adsorption affinity of As species and removal kinetics determined the removal efficiency of As in a flow system.

금속광산 일대의 비소오염 지중 복원기술로써 투수성 반응벽체의 흡착제로 철산화물인 적철석 피복 모래의 적용가능성을 평가했다. 이를 위해서 흡착곡선실험, 비소제거속도실험 및 컬럼내 비소 제거 실험을 통해서 철산화물 피복 모래에 의한 비소 3가와 비소 5가의 제거 효율 및 유동환경에서의 비소 제거능력에 대해 고찰하였다. 적철석 피복 모래는 1.0 mg/L 수준의 낮은 비소 농도에서 높은 흡착력을 보이는 선형 등온 흡착곡선을 보였다. 컬럼실험에서 높은 피복모래의 안은 비소제거효율을 높였으나, 비소 3가가 비소 5가보다 흡착력이 떨어지고 지하수의 유동적인 환경에서 비소의 물리적 확산 현상으로 흡착반응속도의 저하 때문에 제거양이 감소했다. 따라서, 유동적인 환경에서 피복모래의 상대적인 양, 비소화학종의 흡착력, 흡착반응속도가 제거 효율을 좌우했다.

Keywords

References

  1. Ko, I, Ahn, J.S, Park, Y.S. and Kim, K.W., 'Arsenic con-tamination of soils and sediments from tailings in the vicinity of Myungbong Au mine, Korea', Chemical speciation and bioavailability 15(3), pp. 67-74 (2003) https://doi.org/10.3184/095422903782775217
  2. 고일원, 이상우, 김주용, 김경웅, 이진수, 전효택, 정명채, '국내 폐금은 광산주변의 비소 및 중금속의 오염 가능성과 복원순위', 한국지구시스템공학회지 40(5), pp. 367-378(2003)
  3. 안주성, 김주용, 전철민, 문희수, '풍화광미내고상비소의 고물학적 화학적 특성 및 용출 가능성 평가', 자원환경지질 36, pp. 27-38 (2003)
  4. 이민희, 최정찬, 김진원, ' 고로폐광산 주변 농경지 토양 및 하천 퇴적토의 중금속 오염 분포 및 복원 대책 설계', 자원환경 지질 36. pp. 89-101 (2003)
  5. Ko, I, Ahn, J.S. and Kim, K.-W. 'Arsenic contamination of soils and stream sediments from the tailings in the vincinity of Myungbong Au mine in Korea' 10th Water-Rock Interaction Proceedings, Cagliary, Italy, 2, pp. 1241-1244 (2001)
  6. 이진수, Klinck, B.A., Moore, Y., 전효택. ' 다덕광산 주변지역에서의 독성원소들의 환경오염 및 인체흡수도', 자원환경지질 33, pp. 273-282 (2000)
  7. 정명채, '휴/폐광 금은광산 주변의 토양오염조사와 복구시스템 연구', 자원환경지질 32, pp. 385-398 (1999)
  8. Smedley, P.L. and Kinniburgh, D.G., 'A review of the source, behaviour and distribution of arsenic in natural waters' Appl. Geochem. 17, pp. 517-568 (2002) https://doi.org/10.1016/S0883-2927(02)00018-5
  9. WHO, Guidelines for drinking water quality, volume 1: Recommendations, 2nd., WHO, Geneva, (1993)
  10. EC, Directive related with drinking water quality intended for human consumption, Brussels, Belgium. 98/83 (1998)
  11. USEPA, Arsenic in drinking water: health effects research, In: www.epa.gov/OGWDW/ars/ars10.html (1999)
  12. 환경부, 지하수의수질보전등에관한규칙 개정령(2003)
  13. Dutre, V. Kestens, C. Schaep, J. and Vandecasteele, C. 'Study of the remediation of a site contaminated with arsenic' Sci. total environ, 220, pp. 185 (1998) https://doi.org/10.1016/S0048-9697(98)00254-X
  14. USEPA, Arsenic Treatment Technologies for Soil, Waste, and Water, EPA-542-R-02-004 (2002)
  15. USEPA, Innovative Technology Evaluation Report. Enviro-Metal Technologies, Inc.: Metal-Enhanced Dechlorination of Volatile Organic Compounds Using an In-Situ Reactive Iron Wall, EPA-540-R-98-501, 105 pp. (1998)
  16. DOE, Permeable Reactive Treatment (PeRT) Wall for Rads and Metals, DOE-EM-0557 (2000)
  17. Matthew, J.D., Arup, K.S., John, E.G., 'Arsenic removal using a polymeric/inorganic hybrid sorbent' Water Research 37, pp. 164-176 (2003) https://doi.org/10.1016/S0043-1354(02)00238-5
  18. Ko, I.. Kim, J.Y. and Kim, K.W. 'Colloid barrier formation by nanoscale hematite particles' 4th Int'l Symp. on AEM. Cheju, Korea (2002)
  19. Min, J.M., and Hering, J., 'Arsenate sorption by Fe(III)doped alginate gels' Water Res. 32, pp. 1544-1552 (1998) https://doi.org/10.1016/S0043-1354(97)00349-7
  20. Joshi, A and Chaudhuri, M., 'Removal of arsenic from groundwater by iron-oxide-coated sand", J. of Environ. Eng., 122, pp. 769-771 (1996) https://doi.org/10.1061/(ASCE)0733-9372(1996)122:8(769)
  21. Sugimoto, T., Sakata, K, and Muramatsu, A, 'Formation mechanism of monodisperse pseudocubic-hematite parti-cles from condensed ferric hydroxide Gel", J. Colloid & Interface Sci., 159, pp. 372-382 (1992)
  22. Clesceri, S., Eaton, AD. and Greenberg, A.E. 'Standard methods for examination of water and wastewater' Washington D.C. (2001)
  23. Cantrell, K.J. and Kaplan, D.I., 'Zero-valent iron for the in-situ remediation of selected metals in groundwater', J. of Environ. Engineering. 123, pp. 499-505 (1997) https://doi.org/10.1061/(ASCE)0733-9372(1997)123:5(499)
  24. Lien, H.-L., and Zhang,W.-X., 'Nanoscale iron particles for complete reduction of chlorinated ethane' Colloids Surface, 191, pp. 97-105 (2001) https://doi.org/10.1016/S0927-7757(01)00767-1
  25. Jain, A., Raven, K.P., and Loeppert, R.H., 'Arsenite and arsenate adsorption on ferryhydrite: surface charge reduction and net OH-release stoichiometry' Environ. Sci. Technol., 33, pp. 1179-1184 (1999) https://doi.org/10.1021/es980722e
  26. Hering, J.G., Chen, P.-Y., Wilkie, JA, Elimelech, M., and Liang, S., 'Arsenic Removal by Ferric Chloride', Journal American Water Works Association, 88, pp. 155-167 (1996)
  27. Darland, Jeffrey E. and Inskeep, William P., Effects of pore water velocity on the transport of arsenate, Environ. Sci. Technol. 31, pp. 704-709 (1997) https://doi.org/10.1021/es960247p
  28. Mesuere, K., and Fish, W., 'Chromate and oxalate adsorp-tion on goethite. 2. Surface complexation modeling of com-petitive adsorption', Environ. Sci. Technol. 26, pp. 2365-2370 (1992) https://doi.org/10.1021/es00036a005