Accumulation Property in Human Body of Benzene Derived from Groundwater According to Exposure Pathway

지하수에서 유래한 벤젠의 노출경로별 인체축적특성

  • 김상준 (한국과학기술원 생명화학공학과 환경복원공학연구실) ;
  • 이현호 (LG 환경안전연구원) ;
  • 박지연 (한국과학기술원 생명화학공학과 환경복원공학연구실) ;
  • 이유진 (한국과학기술원 생명화학공학과 환경복원공학연구실) ;
  • 유동한 (한국원자력연구소) ;
  • 양지원 (한국과학기술원 생명화학공학과 환경복원공학연구실)
  • Published : 2004.03.01

Abstract

The contamination pattern of indoor air was simulated when groundwater dissolving benzene was used for household activities. Indoor exposure scenario consisted of inhalation, ingestion, and dermal absorption. Physiologically based pharmacokinetic (PBPK) model was used to analyze how benzene exposed to human body was distributed in internal organs. Main exposure pathways contributing total internal dose were inhalation and ingestion while the contribution of dermal absorption was very small. Man showed higher exposure rate than woman due to his higher breath rate. For a short-term exposure, benzene concentration in venous blood of SPT, RPT and liver changed rapidly while slowly did in venous blood of adipose tissue at a low concentration. For a long-term exposure, woman accumulated about 2.1 times higher than man. Most of benzene exposed to human body was removed by exhalation and metabolism at lung and liver, respectively. For inhalation and ingestion, the benzene removals by exhalation were 69.8 and 48.4%, respectively. Relative importance of removal mechanism was different according to the inflow displacement of benzene. The results obtained from this study would help understand exposure, distribution, and removal phenomena and make plans for the reduction of the health risk associated with the contaminated groundwater by various organic compounds.

본 연구에서는 벤젠을 대상으로 오염된 지하수를 생활용수로 사용했을 때 발생하는 실내오염도를 모사하고 실내에서 가능한 흡입, 섭취, 피부흡수와 같은 노출경로를 고려하여 노출시나리오를 자성하였다. 인체에 유입된 벤젠에 대하여 PBPK 모델을 이용하여 인체의 각 장기에 어떻게 분포하는지를 분석하였다. 결과에서 흡입과 섭취가 주요노출 경로였으며 남성이 여성보다 많은 호흡량으로 인해 보다 높은 노출속도를 유지하였다. 노출속도에 대한 피부흡수의 공헌도는 상대적으로 매우 작았다. 단기노출의 결과 오염물 노출에 대하여 SPT, RPT,간의 정맥혈 중 벤젠농도는 빠르게 증감하는 반면 지방의 경우는 느리게 반응하였고 많은 벤젠이 지방세포에 축적되어 정맥혈에는 적은 농도로 존재하였다. 장기간 노출에서 여성은 남성보다 전체적으로 2.1배 많은 벤젠을 체내에 축적하고 있는 것으로 나타났다. 장기간 노출에서 총유입벤젠의 98%가 호흡과 대사분해에 의해 제거되었다. 흡입경로는 벤젠이 호흡배출에 의해 69.8% 제거되었으며 섭취경로는 48.4%로 오염물이 유입되는 위치에 따라 각각의 제거기작의 공헌도가 다르게 나타났다. 본 연구의 결과는 실내오염에 따라 오염물이 체내에 흡수되고 분포ㆍ제거되는 현상을 이해하고 노출저감대책을 마련하는데 필요한 자료를 제공하고자 하였다.

Keywords

References

  1. Biodegradation of Gasoline Additives MTBE (Methyl-tert-Butyl Ether) and Other Oxygenates, available at http://kuic.kyonggi.ac.kr/-swchang
  2. Kao, C.M. and Wang C.C., 'Control of BTEX migration by intrinsic bioremediation at a gasoline spill site', Water Research, 34(13), pp. 3413-3423 (2000) https://doi.org/10.1016/S0043-1354(00)00070-1
  3. Choi, K.-Y., Yu, D., and Yang, J.-W., 'Health risk assess-ment of oil Leakage from a gas station', J. of KSEE, 21(9), pp. 1761-1771 (1999)
  4. Haddad, S., Tardif, R., CharestTardif, G., and Krishnan, K., 'Physiological modeling of the toxico-kinetic interactions in a quaternary mixture of aromatic hydrocarbon", Toxicol Appl. Pharmacol, 161(3), pp. 249-257 (1999) https://doi.org/10.1006/taap.1999.8803
  5. Nakayama, A., Koyoshi, S., Morisawa, S., and Yagi, T., 'Comparison of the mutations induced by p-benzoquinone, a benzene metabolite, in human and mouse cells', Mutation Research, 470(2), pp. 147-153 (2000) https://doi.org/10.1016/S1383-5718(00)00099-1
  6. Spengle, J.D. and Dockery, D.W., 'Personal exposure to respirable particulates and sulfates', Journal of Air Pollution Control Association, 31, pp. 153-159 (1981) https://doi.org/10.1080/00022470.1981.10465205
  7. Kim, S.-J., Cho.. H.-J., Park, J.-Y., Yang, J.-W., and Yu, D., 'A physiologically based pharmacokinetic model for contaminated indoor air from goundwater containing BTEX by inhalation pathway', J. of KSEE, 24, pp. 1465-1478 (2002)
  8. Yang, J.-W., Kim, S.-J., Park, J-Y., Cho, H.-J, Lee, Y.-J, and Yu, D., 'A physiologically based pharmacokinetic model of benzene dissolved in groundwater according to patterns of oral exposure, J. of KSEE, 25, pp. 133-143 (2003)
  9. Yang, J. W., Kim, S. J., Park, J. Y., Lee, Y. J., Cho, H. J., and Yu, D., 'Exposure assessment of benzene from groundwater by dermal absorption', J. of KSEE, 25, pp. 446-453 (2003)
  10. McKone, T.E., 'Human exposure to volatile organic compounds in house:hold tap water: the indoor inhalation pathay', Environ. Sci. Technol., 21, pp. 1194-1201 (1987) https://doi.org/10.1021/es00165a006
  11. Han, M.Y., 'Water supply alternatives considering quantity, quality and Energy of water', J. of KSWQ, 11, pp. 263-268 (1995)
  12. Prichard, H.M. and Dockery, T.E, 'An estimate of population exposures due to radon in public water supplies in the area of Houston, Texas', Health Phys., 41, pp. 599-606 (1981) https://doi.org/10.1097/00004032-198110000-00002
  13. USEPA, Dermal exposure assessment: principles and application, Interim Report (EPA/600/8-91/011B) (1992)
  14. Leung, H.-W. and Paustenbach D.J., 'Physiologically based pharmacokinetic and pharmacodynamic modeling in health risk assessment and characterization of hazardous substances', Toxicology letters, 79, pp. 55-65 (1995) https://doi.org/10.1016/0378-4274(95)03357-Q
  15. Andersen, M.E, Gargas, M., Smith, F.A, and Reitz, R.H., 'Physiologically based pharmacokinetics and the risk assessment process for methylene chloride', Toxicol. Appl. Pharmcol., 87, pp. 185-205 (1987) https://doi.org/10.1016/0041-008X(87)90281-X
  16. Haddad, S., Withey. J., Lapare, S., Law, F, and Krishnan, K., 'Physiologically-based pharmacokinetic modeling of pyrene in the rat', Environ. Toxicol. Pharmacal., 5, pp. 245-255 (1998) https://doi.org/10.1016/S1382-6689(98)00008-8
  17. 한국표준과학연구원, 국민표준체위조사보고서, 공업진흥청 (1992)
  18. USEPA, Inhalation exposure factors handbook, Volume I: General Factors, Chapter 5 (1996)