주파수 차이 검출기를 이용한 광파의 off-set 주파수 로킹 연구

A Study on the Lightwave off-set Locking using Frequency Difference Detector

  • 유강희 (충주대학교 전자통신공학과)
  • 발행 : 2004.04.01

초록

본 논문은 초고주파 주파수 차이 검출기를 이용한 광파의 off-set 로킹에 대하여 설계 및 제작 실험 결과를 기술하였다. 두 광파를 비팅하여 중간 주파수인 1.5GHz 주파수 성분을 추출하고 이 값을 다시 1.5GHz 기준 발진기 주파수와 곱하여 차이주파수 성분을 추출한 후 주파수 차이 검출기를 이용하여 주파수 로킹을 시켰다. 상용화된 초고주파 부품을 사용하여 주파수 차이 검출기를 제작하였으며 1.55$\mu\textrm{m}$ 파장의 반도체 레이저의 발생 광파를 입력 광파와 1.5GHz의 주파수 off-set을 유지하면서 로킹이 이루어짐을 확인하였으며 로킹 범위는 320MHz이었다.

A new lightwave locking technique which can be used in tuning the wavelength of a local laser diode to the reference wavelength is presented in this paper. The optical frequency from the reference laser source and the optical frequency from the local slave VCO laser are heterodyned on a optical receiver, resulting in the 1.5GHz RF signal corresponding to the difference frequency between two input optical signals. The difference frequency is locked to the reference 1.5GHz oscillator source in off-set frequency locking loop. Using the commercialized microwave components, frequency difference detector can be easily established to lock the lightwave. The optical frequency of 1.55um laser diode which keeps the frequency off-set of 1.5GHz is locked to the input reference optical signal with the locking range of 320MHz.

키워드

참고문헌

  1. U. H. P. Fischer and Clemences von Helmolt, Absorption Spectra of Exited Kr 84 States Between 1.5 and 1.58um and Their Use for Absolute Frequency Locking, J. Lightwave Technol., vol. 14, pp. 139-143, 1996 https://doi.org/10.1109/50.482254
  2. K. Kuboki and M. Ohtsu, A Synthesized Method to improve Coherence in Semiconductor Lasers by Electrical Feedback, IEEE J. Quantum Electronics., vol. 25, pp. 2084-2090, 1989 https://doi.org/10.1109/3.35719
  3. K. Kuboki and M. Ohtsu, An Allan Variance Real-Time Processing System for frequency Stability Measurements of Semiconductor Laser, IEEE Trans. Instrumentation and measurement, vol. 39, pp. 637-641, 1990 https://doi.org/10.1109/19.57247
  4. U. Glese, T. N. Nielson, and B. Broberg, A Wideband Optical Phase Locked Loop for Generation of 3-18GHz Microwave Carriers, IEEE Photonics Technol. Lett., vol. 4, pp. 936-938, 1992 https://doi.org/10.1109/68.149915
  5. M. Ohtsu, Realization of Ultrahigh Coherence in Semiconductor Lasers by Negative Elec- trical Feedback, J. Lightwave Technol., vol. 6, pp. 245-256, 1988 https://doi.org/10.1109/50.3996
  6. T. G. Hodgkinson, Phase-locked-loop analysis for pilot carrier coherent optical receiver,' Electron. Lett, vol. 21, pp. 1202-1203, 1985 https://doi.org/10.1049/el:19850848
  7. R. C. Steel, Optical Phase Locked Loop using Semiconductor Laser Diodes, Electron. Lett., vol.19, pp.69-71, 1983 https://doi.org/10.1049/el:19830051
  8. H. R. Telle and H. Li, Phase-Locking of Laser Diodes, Electron. Lett., vol. 26, pp. 858-859, 1980
  9. 추봉진, 최종문, 최용화, 이호준, 스캐닝 광섬유 Fabry-Perot 간섭계를 이용한 멀티 캐리어 레이저 다이오드 주파수 안정, 전자공학회 논문지, 제28권, pp. 47-53, 1991
  10. D. Jay M. Sabido IX, M. Tabara, and L. G. Kazovsky, Experimental Linewidth Insensitive Coherent Analog Optical Link, J. of Light- wave Technology, vol. 12, pp. 1976-1986, 1994 https://doi.org/10.1109/50.336063
  11. J. Harrison, 'Linewidth and offset frequency locking of external cavity GaAlAs lasers, J. Quantum Electro., vol. 25, no. 6, pp. 1152-1155, April. 1987
  12. F. M. Gardner, Properties of Frequency Difference Detectors, IEEE Trans. Com., vol. C0M-33, pp. 131-138, 1985
  13. A. N. D'Andrea and U. Mengali, Design of Off-set s for Automatic Frequency Control Systems, IEEE Trans. Com., vol. 41, pp. 988-997, 1993 https://doi.org/10.1109/26.231920
  14. D. G. Messerschmitt, Frequency Detectors for PLL Acquisition in Timing and Carrier Recovery, IEEE Trans. Com., vol. C0M-27., pp. 1288-1295, 1979
  15. A. N. D'Andrea and U. Mengali, Performance of Quadricorrelator Driven Modulated Signals, IEEE Trans. Com., vol. 38, pp. 1952-1957, 1990 https://doi.org/10.1109/26.61476
  16. A. Bononi, and P. Ghiggino, Analysis of the Automatic Frequency Control in Heterodyne Optical Receiver, J. Lightwave Technol., vol. 10, no. 6, pp. 794-803, 1992 https://doi.org/10.1109/50.143080