DOI QR코드

DOI QR Code

Fabrication and Microstructure of Hydroxyapatite Coating Layer by Plasma Spraying

플라즈마 용사법에 의한 Hydroxyapatite코팅층의 제조와 미세구조

  • 이치우 (공주대학교 신소재공학부) ;
  • 오익현 (공주대학교 신소재공학) ;
  • 이형근 (한밭대학교 재료공학) ;
  • 이병택 (공주대학교 신소재공학부)
  • Published : 2004.03.01

Abstract

The microstructure of nano-sized hydroxyapatite (HAp) powders coating layer on ZrO$_2$ substrate was investigated, which was formed by plasma spray process. The nano-sized HAp powders were successfully synthesized by precipitation of Ca(NO$_3$)$_2$$.$4H$_2$O and (NH$_4$)$_2$HPO$_4$ solution. The HAp coating layer with thickness of 150∼250 $\mu\textrm{m}$ was free from the cracks at interfaces between the coating and ZrO$_2$ substrate. In the plasma sprayed HAp coating layer, the undesirable phases were not found, while in the HAp coating layer heat-treated at 800$^{\circ}C$, TTCP, and ${\beta}$-TCP phase were detected as well as HAp phase. However, at 900$^{\circ}C$, they were completely disappeared. At 1100$^{\circ}C$, XRD analysis revealed that the coating layer was composed of the highly crystallized HAp.

플라즈마 용사법에 의해 나노크기의 하이드록시 아파타이트 분말을 지르코니아 소결체 기판에 용사한 후 코팅층의 미세조직에 대해 조사하였다. 나노크기의 하이드록시 아파타이트 분말은 Ca(NO$_3$)$_2$$.$4$H_2O$과 (NH$_4$)$_2$HPO$_4$ 용액을 이용한 침전법에 의해 성공적으로 합성되었다. 코팅 후 지르코니아 기판과 코팅층 계면에서 균열은 발생하지 않았으며 코팅층의 두께는 150-250 $\mu\textrm{m}$였다. 나노크기의 하이드록시아파타이트 분말과 용사된 HAp코팅층에서는 비이상적인 상들의 출현이 발견되지 않았다. 80$0^{\circ}C$에서 열처리된 코팅층의 경우 하이드록시 아파타이트 이외에 TTCP와 $\beta$-TCP같은 상이 관찰되었지만 열처리온도 90$0^{\circ}C$에서 TTCP와 $\beta$-TCP상은 소멸되었다. XRD 분석결과, 열처리온도 110$0^{\circ}C$에서 HAp코팅층은 높은 결정화도를 나타내었다.

Keywords

References

  1. Ceramist v.5 Ceramics Bio-Material T.N.Kim
  2. J. Kor. Ceram. Soc. v.33 no.1 Synthesis of Hydrosyapatite Powder by Homogeneous Precipitation Method and their Thermal Changes J.H.Lee;H.Park;C.E.Kim
  3. Biomaterials v.24 no.6 Fabrication of HAp-ZrO₂(3Y) NaonComposite by SPS W.Li;L.Gao https://doi.org/10.1016/S0142-9612(02)00428-3
  4. Aust. NZJ. Opthalmol. v.23 Hydroxyapatite Orbital Implants A.Mcnab https://doi.org/10.1111/j.1442-9071.1995.tb00139.x
  5. J. Kor. Assoc. Cry Grow. v.11 no.3 Fabrication of Functionally Graded Materials of Hydroxyapatite and Zirconia S.J.Kim;K.S.Cho;N.J.Park
  6. J. Kor. Ceram. Soc. v.28 no.11 Effect of pH on the Synthesis of Hydroxyapatite S.R.Kim;B.M.Lee;Y.K.Park
  7. J. Kor. Ceram. Soc. v.36 no.4 Study on the Sparying Parameters of a Plasma-Sprayed Hydroxyapatite Coating I.W.Lyo;H.Y.Ahn
  8. Ceramist v.5 Zirconia D.Y.Lee
  9. J. Mat. Sci. v.18 no.4 X-Ray Diffraction Methods to Determine Crystallinity and Preferred Orientation of Lithium Disilicate in Li-Zn-Silicate Glass-Ceramic Fiber A.Benedetti;G.Cocco;G.Fagherazzi https://doi.org/10.1007/BF00551972
  10. Biomaterials v.19 no.22 Plasma-Sprayed Hydroxyapatite Coatings on Titanium Substrates. Part I: Mechanical Properties and Residual Stress Levels Y.C.Tsui;C.Doyle;T.W.Clyne https://doi.org/10.1016/S0142-9612(98)00103-3
  11. Biomaterials v.22 no.8 Structure and Immersion behavior of Plasma-Sprayed Apatite-Matrix Coatings S.J.Ding;Y.M.Su;C.P.Ju;J.H.Chern Lin https://doi.org/10.1016/S0142-9612(00)00247-7
  12. Biomaterials v.23 no.3 Mechanochemicalhydrothermal Synthesis of Carbonated Apatite Powders at Room temperature W.L.Suchanek;P.Shuk;K.Byrappa;R.E.Riman;K.S.TenHuisen;V.F.Janas https://doi.org/10.1016/S0142-9612(01)00158-2
  13. Biomaterials v.21 Plasmaridized Feedstock: Microstructure and Mechanical Properties S.W.K.Kweh;K.A.Khor;P.Cheang https://doi.org/10.1016/S0142-9612(99)00275-6
  14. Biomaterials v.16 no.5 Sintering Effexts on the Strength of Hydroxyapatite A.J.Ruys;M.Wei;C.C.Sorrell;M.R.Dickson;A.Brand-wood;B.K.Mithorpe https://doi.org/10.1016/0142-9612(95)98859-C