Design of a Continuous Adaptive Robust Control Estimating the Upper Bound of the Uncertainties using Fredholm Integral Formulae

Fredholm 적분식을 이용하여 불확실성의 경계치를 추정하는 적응강인제어기 설계

  • 유동상 (한경대학교 전기공학과)
  • Published : 2004.04.01

Abstract

We consider a class of uncertain nonlinear systems containing the uncertainties without a priori information except that they are bounded. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound. Using this adaptive upper bound, a continuous robust control which renders uncertain nonlinear systems uniformly ultimately bounded is designed.

Keywords

References

  1. S.Gutman, 'Uncertain dynamical systems - A Lyapunov min max approach', IEEE Trans. on Automatic Control, vol 24, no. 3, pp. 437-443, March 1979 https://doi.org/10.1109/TAC.1979.1102073
  2. M.J.Corless;G.Leitman, 'Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems', IEEE Trans. on Automatic Control, vol. 26, no. 5, pp. 1139-1144, May 1981 https://doi.org/10.1109/TAC.1979.1102073
  3. B.R.Barmish;M.J.Corless;G.Leitmann, 'A new class of stabilizing controllers for uncertain dynamical systems', SIAM J. of Control and Optimization, vol. 21, no. 2, pp. 246-255, 1983 https://doi.org/10.1137/0321014
  4. Y. H. Chen, 'Design of robust controllers for uncertain dynamical systems', IEEE Trans. on Automatic Control, vol. 33, no. 5, pp. 487-491, May 1988 https://doi.org/10.1109/9.1235
  5. V. I. Utkin, 'Variable structure systems with sliding modes', IEEE Trans. on Automatic Control, vol. 22, no. 2, pp. 212-222, Feb. 1977 https://doi.org/10.1109/9.1235
  6. R. A. DeCarlo, S. H. Zak, G. P. Mathews, 'Variable structure control of nonlinear multivariable systems: A tutorial', IEEE Proceedings, vol. 76, pp. 212-232, 1988 https://doi.org/10.1109/5.4400
  7. Y. H. Chen, 'Robust control system design: non adaptive and adaptive', International Journal of Control, vol. 51, no. 6, pp. 1457-1477, 1990 https://doi.org/10.1109/5.4400
  8. D. S. Yoo, M. J. Chung, 'A Variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties', IEEE Trans. on Automatic Control, vol. 37, no. 6, pp. 860-865, June 1992 https://doi.org/10.1109/9.256348
  9. C.H. Choi and H.-S. Kim, 'Adaptive regulation for a class of uncertain systems with partial knowledge of uncertainty bounds' IEEE Trans. on Automatic Control, vol. 38, no. 8, pp. 1246-1250, August 1993 https://doi.org/10.1109/9.233160
  10. B. Brogliato and A. T. Neto, 'Practical stabilization of a class of nonlinear systems with partially known uncertainties', Automatica, vol. 31. no. 1, pp. 145-150, 1995 https://doi.org/10.1016/0005-1098(94)E0050-R
  11. H. Wu, 'Continuous adaptive robust controllers guaranteeing uniform ultimate boundedness for uncertain nonlinear system', International Journal of Control, vol. 72, no. 2, pp. 115-122, 1999 https://doi.org/10.1080/002071799221280
  12. G. Arfken and H. Weber, Mathematical methods for physicists, Academic Press, New York, 1970
  13. W. Messner, R. Horowitz, W. W. Kao, and M. Boals, 'A New Adaptive Learning Rule', IEEE Trans. on Automatic Control, vol. 36, no. 2, pp. 188-197, 1991 https://doi.org/10.1109/9.67294
  14. 유동상, '불확실성의 경계치 적용기법을 가진 슬라이딩 모드 제어기 설계', 대한 전기학회 논문지, wp 52D권, 7호, pp. 418-423, 2003. 7
  15. 대한전기학회 논문지 v.52D no.7 불확실성의 경계치 적용기법을 가진 슬라이딩 모드 제어기 설계 유동상