Cry11Aa 유전자로 형질전환된 Synechocystis PCC6803의 작은빨간집모기와 중국얼룩날개모기 유충에 대한 살충효과

Mosquito Larvicidal Activity of Synechocystis PCC6803 Transformed with the cry11Aa gene to Culex tritaeniorhynchus and Anopheles sinensis

  • 이대원 (서울대학교 농업생명과학대학 농생명공학부)
  • 발행 : 2004.03.01

초록

Bacillus thuringiensis는 포자형성기 동안에 위생해충이나 농업해충에 독성을 보이는 내독소 단백질을 생성한다. 내독소 단백질의 모기 유충 방제효과를 높이기 위해, 광합성에 관여하는 psbA promoter로 모기 살충성 cry11Aa유전자를 발현하는 pSyn4D벡터를 제작하고, 모기 유충이 먹이로 이용하는 Synechocystis PCC6803에 형질 전환시켰다. 형질 전환체들은 kanamycin이 포함된 배지에서 선발되었으며, 정상적인 생물검정을 통해 형질 전환체 Tr2C를 선발하였다. cry11Aa 유전자는 형질전환체의 genomic DNA에 안정적으로 결합되어 있는 것을 PCR을 이용하여 확인하였다. 형질전환체 Tr2C는 약 72-kDa크기의 Cry11Aa 단백질을 발현하였으며, 작은빨간집모기(Culex tritaeniorhynchus) 3령 유충과 중국얼룩날개모기(Anopheles sinensis) 3령 유충에 75%가 넘는 살충력을 보였다. 모기 유충에 대한 형질전환체의 반수치사시간(LT$_{50}$)은 작은빨간집모기 유충과 중국얼룩날개모기 유충에 대해 각각 2.1일과 0.7일이었다. 이상의 결과들은 형질전환체 Tr2C가 모기 유충방제에 유용하게 이용될 수 있음을 보여준다.

Bacillus thuringiensis produces crystal proteins toxic to medically and agriculturally important pests during sporulation. To improve the activity of insecticidal crystal protein in applying to mosquito larval control, an expression vector, pSyn4D harboring the mosquitocidal cry11Aa gene under control of psbA promoter of Amaranthus hybridus was constructed. This expression vector was transformed into Synechocystis PCC6803 and a transformant, Tr2C was selected with kanamycin. The mosquitocidal cry11Aa gene was stably integrated Into genomic DNA of Tr2C in PCR detection using cry11Aa-specific primers. The transformant expressed 72-kDa Cry11Aa protein and median lethal time (LT$\sub$50/) was approximately 2.1 days for Culex tritaeniorhynchus larvae and 0.7 day for Anopheles sinensis larvae, respectively. These results suggest this transformant can be used for mosquito larval control as a biological control agent.

키워드

참고문헌

  1. Angsuthanasombat, C. and S. Panyim. 1989. Biosynthesis of 130kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. AppI. Environ. Microbiol. 55: 2428-2430
  2. Aronson, A.L, W. Beckman and P. Dunn. 1986. Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50: 1-24
  3. Cohen, E., H. Rozen, T. Joseph, S. Braun and L. Margulies. 1991. Photoprotection of Bacillus thuringiensis kurstaki from ultraviolet irradiation. J. Invertebr. Pathol. 57: 343-351 https://doi.org/10.1016/0022-2011(91)90138-G
  4. Cote, R.J. and R.L. Gherna. 1994. Nutrition and media. pp.155-178. In Methods for general and molecular bacteriology, eds. by P. Gerhardt, R.G.E. Murray, W.A. Wood and N.R. Kreig. 791pp. American Society for Microbiology, Washington, DC
  5. Crickmore, N., S. Poncet, A. Klier and DJ. Ellar. 1995. Contribution of the individual components of \delta-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbial. Lett. 131: 249-254
  6. Delecluse, A., J.F. Charles, A. Klier and G. Rapoport. 1991. Deletion by in vivo recombination shows that 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J. Bacteriol. 173: 3374-3381
  7. Dzelzkans, V.A. and L. Bogorad. 1986. Stable transformation of cyanobacterium Synechocystis sp. PCC6803 induced by UV irridation. J. Bacteriol. 165: 964-971
  8. Ehling-Schulz, M., W. Bilger and S. Scherer. 1997. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179: 1940-1945
  9. Gill, S.S., E.A. Cowles and P.V. Pietrantonio, 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636 https://doi.org/10.1146/annurev.en.37.010192.003151
  10. H$\"o$fte, H. and H.R. Whiteley. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255
  11. Khasdan, V., E. Ben-Dov, R. Manasherob, S. Boussiba and A. Zaritsky. 2001. Toxicity and synergism in transgenic Escherichia coli expressing four genes from BaciIlus thuringiensis subsp. israelensis. Environ. Microbiol. 3: 798-806 https://doi.org/10.1046/j.1462-2920.2001.00253.x
  12. Kim, H.S., D.W. Lee, S.D. Woo, Y.M. Yu and S.K. Kang. 1998. Distribution, serological identification and PCR analysis of Bacillus thuringiensis isolated from soils of Korea. Curr. Microbiol. 37: 195-200 https://doi.org/10.1007/s002849900363
  13. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  14. Lluisma, A.O., N. Karmacharya, A. Zarka, E. Ben-Dov, A. Zaritsky and S. Boussiba. 2001 Suitability of Anabaena PCC7120 expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis for biotechnological application. Appl. Microbiol. Biotechnol. 57: 161-166 https://doi.org/10.1007/s002530100776
  15. Magalith, Y. and E. Ben-Dov. 2000. Biological control by Baciltus thuringiensis subsp. israeIensis. pp. 243-301. In Insect Pest Management: Techniques for Environmental Protection, eds. by J.E. Rechcigl and N.A. Rechcigl. 408pp. Lweis Publisher, Boca Raton, FL
  16. Manasherob, R., E. Ben-Dov, X. Wu, S. Boussiba and A. Zaritsky. 2002. Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp. israelensis expressed in Anabaena PCC7120. Curr. Microbiol. 45: 217-220 https://doi.org/10.1007/s00284-001-0106-5
  17. Murphy, R.C. and S.E. Stevens. 1992. Cloning and expression of cryIVD gene of BuciIlus thuringiensis subsp. israelensis in the cyanobacterium AgmeneIIum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 58: 1650-1655
  18. Pfannenstiel, M.A., G.A. Gouche, EJ. Ross and K.W. Nickerson. 1986. Immunological relationship among proteins making up the Bacillus thuringiensis subsp. israelensis crystalline toxin. Appl. Environ. Microbiol. 52: 644-649
  19. Poncet, S., A. Delecluse, A. Klier and G. Rapoport. 1995. Evaluation of synegistic interactions among the CryIVA, CryIVB and CryIVD toxic components of B. thuringiensis subsp. israelensis crystals. J. Invertebr. Pathol. 43: 140-143 https://doi.org/10.1016/0022-2011(84)90131-9
  20. Porter, R.D. 1988. DNA transformation. Methods Enzymol. 167: 703-712 https://doi.org/10.1016/0076-6879(88)67081-9
  21. Raymond, K.C., H. Waboko, R.M. Faust and L.A. Bulla, Jr. 1990. Transfer of the Bacillus thuringiensis mosquitocidal toxin gene into mosquito larval food sources, pp. 94-109. In Bacterial control of mosquitoes and blackflies: biochemistry, genetics, and applications of Bacillus thuringiensis and Bacillus sphaericus, eds. by H. de Barjac and D. Sutherland. 336pp. Rutgers University Press, New Brunswick, NJ
  22. Soltes-Rak, E., DJ. Kushner, D.D. Williams and J.R. Coleman. 1993. Effect of promoter modification on mosquitocidal cryIVB gene expression in Synechococcus sp. strain PCC7942. Appl. Environ. Microbiol. 59: 2404-2410
  23. Tandeau de Marsac, N., F. de la Torre and J. Szulmaster. 1987. Expression of the larvicidal gene of Bacillus sphaericus 159M in the cyanobacterium Anacystis nidulans. Mol. Gen. Genet. 209. 396-398 https://doi.org/10.1007/BF00329671
  24. Thomas, W.E. and D.J. Ellar. 1983. Bacillus thuringiensis var. israelensis crystal \delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J. Cell Sci. 60: 181-197
  25. Towbin, H.R., R. Stachelin and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets : Procedure and some applicatin. Proc. Natl. Acad. Sci. USA 76: 4350-4354 https://doi.org/10.1073/pnas.76.9.4350
  26. Waalwijk, C., A.M. Dullemans, M.E.S, Van Workman and B. Visser. 1985. Molecular cloning and the nucleotide sequence of the M 28000 crystal protein gene of Bacillus thuringiensis subsp. israelensis. Nucleic Acids Res. 13: 8207-8217 https://doi.org/10.1093/nar/13.22.8207
  27. Wirth, M.C., G.P. Georghiou and B.A. Federici. 1997. CytlA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in mosquito, CuIex quinquefasciatus. Proc. Natl. Acad. Sci. USA 94: 10536-10540 https://doi.org/10.1073/pnas.94.20.10536
  28. Wu, X.Q., S.J. Vennison, L. Huirong, E. Ben-Dov, A. Zaritsky and S. Boussiba. 1997. Mosquito larvicidal activity of transgenie Anabaena strain PCC 7120 expressing combinations of genes from Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 63: 4971-4974