대체 소화제의 열역학적 물성 비교

Comparison of Thermodynamic Properties of Alternative Fire Extinguishing Agent

  • 발행 : 2004.03.01

초록

몬트리올 의정서에 의해서 규제 받는 CFCs와 Halon의 대체 물질인 HFC-23, HFC-125, HFC-227ea, HFC-236fa와 불활성 화합물 $Ar, N_2, CO_2$의 열역학적 물성인 포화압력, 밀도, 엔탈피, 점도를 비교하였다. 본 연구에서는 소화제의 물성을 문헌 값을 온도의 함수로서 표시하였다. HFC 화합물의 열역학적 물성은 Halon-1301과 비슷하게 나타내었다. 불활성 화합물은 주로 혼합물로 이용되지만, 불활성 화합물의 물성은 Halon-1301에 비하여 바람직하지 않았다.

For CFCs and Halons regulated by Montreal Protocol and their alternatives of HFC-23, HFC-125 HFC-227ea, HFC-236fa and the mixtures of inert gases of $Ar, N_2 and CO_2$, the thermodynamic properties of saturated pressure, density, enthalpy and viscosity were compared. In this study, the data from literature were expressed as a function of temperature. Thermodynamic properties of HFC compounds were similar to those of Halon-1301. Inert gas was mainly used as a mixture, but the physical properties of the inert gas does not have the favorable advantages over those of Halon-1301.

키워드

참고문헌

  1. S. Y. Lee and D. M. HA, 'Study of Chemical Safety(1977)
  2. N. Saito, Y. Ogawa, Y. Saso, C. Liao, and R. Sakei, 'Flame-extinguishing Concentrations and Peak Concentrations of $N_2$, Ar, $CO_2$ and their Mixtures for Hydrocarbon Fuels', Fire Safety Journal, Vol. 27, pp.185-200(1996) https://doi.org/10.1016/S0379-7112(96)00060-4
  3. United Nation Environmental Program (UNEP). 'Montreal Protocol on Substances That Deplete The Ozone Layer'(1987)
  4. N. Vahdat, Y. Zou, and M. Colloins, 'Fire-extinguishing Effectiveness of New Binary Agents', Fire Safety Journal, In Press, Corrected Proof(2003)
  5. Y. Zou, N. Vahdat, and M. Collins, 'Fire Extinguishing Ability of 1-bromo-1-propane and 1-methoxynonafluorbutane Evaluated by Cup Burner Method', Journal of Fluorine Chemistry, Vol. 111, pp.33-40(200l) https://doi.org/10.1016/S0022-1139(01)00439-0
  6. J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, 'Molecuar Thermodynarnics of Fluid-phase Equilibria', 2nd Ed., Prentice-Hall PTR, Inc.(1986)
  7. J. M. Smith, H. C. Van Nes, and M. M. Abbott, 'Introduction to Chemical Engineering Thermodynamics', 5th Ed., McGraw-Hill(1997)
  8. J. C. Yang, I. Vazquez, and C. I. Boyer, 'Measured and Predicted Thennodynarnic Properties of Selected halon Altenative/Nitrogen Mixtures', Int. J. Refrig. Vol. 20, pp.96-105(1997) https://doi.org/10.1016/S0140-7007(96)00070-9
  9. A. McCulloch, 'Future Consumption and Emissions of Hydrofluorocarbon (HFC) Alternatives to CFCs: Comparison of Estimates Using Top-down and Bottom-up Approaches', Enviro. Int., Vol. 21, pp.353-362(1995) https://doi.org/10.1016/0160-4120(95)00038-M
  10. E. T. Shimanskaya and E. G. Danilenko, 'Coexistence Curve Scaling Equations of the Alternative Refrigerant HFC-125 and Refrigerent F-I13 near the Critical Point', J. Mole. Liq., Vol. 93, pp.135-138(2001) https://doi.org/10.1016/S0167-7322(01)00221-5
  11. M. Huber, J. Gallagher, M. O. McLinden, and G. Morrison, Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database, REFPROP V. 6.01, National Institute of Standards and Technology, Boulder, CO, (1996)
  12. J. D. Kim, M. S. Yeo, Y. W. Lee, and K. H. Row, 'Empirical Equations for Thermodynamic Physical Properties of Inert Gas', T. of Korean Institute of Fire Sci. & Eng., Vol. 17, No. 1(2003)
  13. J. D. Kim, M. S. Yeo, Y. W. Lee, and K. H. Row, 'Thermodynamic Empirical Equations for Physical Properties of Inert Gas Mixtures', T. of Korean Institute of Fire Sci. & Eng., Vol. 17, No. 2(2003)
  14. J. D. Kim, Y. W. Lee, M. S. Song, and K. H. Row, 'Empirical Equations for Thermodynamic Physical of Freon-23 and HFC-227ea', T. of Korean Institute of Fire Sci. & Eng., Vol. 16, No. 3 (2002)
  15. K. H. Row, M. S. Song, S. G. Han, J. D. Kim, and Y.W Lee, 'Empirical Equations for Physical Properties of Halon-1305 and $CO_2$', T. of Korean Institute of Fire Sci. & Eng., Vol. 16, No. 2(2002)