Kinetic Mechanism of Nucleotide Binding to Escherichia coli Transcription Termination Factor Rho: Stopped-flow Kinetic Studies Using ATP and Fluorescent ATP Analogues

  • Kim, Dong-Eun (Department of Biotechnology and Bioengineering, College of Engineering, Dong-Eui University)
  • 발행 : 2004.01.01

초록

Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. Fluorescence stopped-flow methods using ATP and the fluorescent 2'(3')-O-( N-methylanthraniloyl) derivatives (mant-derivatives) of ATP and ADP were used to probe the kinetics of nucleotide binding to and dissociation from the Rho-RNA complex. Presteady state nucleotide binding kinetics provides evidence for the presence of negative cooperativity in nucleotide binding among the multiple nucleotide binding sites on Rho hexamer. The binding of the first nucleotide to the Rho-RNA complex occurs at a bimolecular rate of 3.6${\times}$10$\^$6/ M$\^$-1/ sec$\^$-1/ whereas the second nucleotide binds at a slower rate of 4.7${\times}$10$\^$5/ M$\^$-1/ sec$\^$-1/ at 18$^{\circ}C$, RNA complexed with Rho affects the kinetics of nucleotide interaction with the active sites through conformational changes to the Rho hexamer, allowing the incoming nucleotide to be more accessible to the sites. Adenine nucleotide binding and dissociation is more favorable when RNA is bound to Rho, whereas ATP binding and dissociation step in the absence of RNA occurs significantly slower, at a rate ∼70- and ∼40-fold slower than those observed with the Rho-RNA complex, respectively.

키워드

참고문헌

  1. Cell v.48 Transcription termination factor rho is an RNA-DNA helicase Brennan,C.A.;A.J.Combroski;T.Platt https://doi.org/10.1016/0092-8674(87)90703-3
  2. Proc. Natl. Acad. Sci. v.90 A physical model for the translocation and hellicase activities of Escherichia coli transcription termination protein Rho Geiselmann,J.;Y.Wang;S.E.von,Seifried;P.H.Hippel https://doi.org/10.1073/pnas.90.16.7754
  3. J. Biol. Chem. v.271 Structural organization of transcription termination factor Rho Richardson,J.P. https://doi.org/10.1074/jbc.271.3.1251
  4. J. Biol. Chem. v.263 Escherichia coli trancription termination protein rho has three hydrolytic sites for ATP Stitt,B.L.
  5. Protein Sci. v.1 Functional interactions of ligand cogactorswith Escherichia coli transcription termination factor rho: I. Binding of ATP Geiselmann,J.;P.H.von,Hippel https://doi.org/10.1002/pro.5560010703
  6. J. Biol. Chem. v.274 Transcription termination factor Rhocontains three noncatalytic nucleotide binding sites Kim,D.E.;K.Shigesada;S.S.Patel https://doi.org/10.1074/jbc.274.17.11623
  7. Protein Sci. v.1 Functional interactions of ligand cogactors with Escherichia coli transcription termination factor rho: Ⅱ. Binding of RNA Geiselmann,J.;T.D.Yager;P.H.von,Hippel https://doi.org/10.1002/pro.5560010704
  8. J. Biol. Chem. v.268 Escherichia coli transcription termination factor rho: Ⅱ. Binding of oligonucleotide cofactors Wang,Y.;P.H.von,Hippel
  9. J. Mol. Biol. v.199 Interactions of Escherichia coli transcription termination factor rho with RNA: Ⅰ. Binding stoichiometries and free energies McSwiggen,J.A.;D.G.Bear;P.H,von,Hippel https://doi.org/10.1016/0022-2836(88)90305-1
  10. J. Mol. Biol. v.299 Three-demensional reconstruction of transcription termination factor rho: Orientation of the N-terminal domain and visualization of an RNA-bindeing site Yu,X.;T.Horiguchi;K.Shigesada;E.H.Egelman https://doi.org/10.1006/jmbi.2000.3810
  11. J. Biol. Chem. v.257 Activation of rho protein ATPase requires simultaneous interaction at two kinds of nucleic acid-binding sites Richardson,J.P.
  12. J. Biol. Chem. v.268 Escherichia coli transcription termination factor rho: Ⅰ. ATPase activation by oliginucleotide cofactors Wang,Y.;P.H.von,Hippel
  13. J. Mol. Biol. v.254 Structural and functional dessections of transcription termination factor rho by random mutagenesis Miwa,Y.;T.Horiduchi;K.Shigesada https://doi.org/10.1006/jmbi.1995.0658
  14. J. Biol. Chem. v.276 RNA passes through the hole of the protein hexamer in the complex with the Escherichia coli Rho factor Burgess,B.R.;J.P.Richardson https://doi.org/10.1074/jbc.M007066200
  15. J. Biol. Chem. v.276 The kinetic pathway of RNA binding to the Escherichia coli transcription termination factor Rho Kim.D.E.;S.S.Patel https://doi.org/10.1074/jbc.M011043200
  16. J. Biol. Chem. v.252 Characterization of the nucleoside triphospatephosphohydrolase (ATPase) activity of RNA synthesis terminatio factor : Ⅱ. Influence of synthetic RNA homopolymers and random copolymers on the reaction Lowery,C.;J.P.Richardsion
  17. J. Biol. Chem. v.273 Sequential hydrolysis of ATP molecles bound in interacting catalytic sites of Escherichia coli transcription termination protein Rho Stitt,B.L.;Y.Xu https://doi.org/10.1074/jbc.273.41.26477
  18. J. Mol. Biol. v.210 Mutant rho factors with increased transctiption termination activities: Ⅱ. Identification and functional dissection of amino acid changes Mori,H.;M.Imai;K.Shigesada https://doi.org/10.1016/0022-2836(89)90289-1
  19. Biochemistry v.20 Procedure for purification of Escherichia coliribonucleic acid synthesis termination protein tho Finger,L.R.;J.P.Richardson https://doi.org/10.1021/bi00509a036
  20. Biochemistry v.31 Physical properties of the Escherichia coli transcription termination factor rho; 1. Association states and geometry of the rho hexamer Geiselmann,J.;T.D.Yager;S.C.Gill;P.Calmettes;P.H.von,Hippel https://doi.org/10.1021/bi00116a017
  21. Biochim. Biophys. Acta. v.742 New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes Hiratsuka,T. https://doi.org/10.1016/0167-4838(83)90267-4
  22. Methods Enzymol. v.278 Fluorescent nucleoride analogs: synthesis and applications. Jameson,D.M.;J.F.Eccleston https://doi.org/10.1016/S0076-6879(97)78020-0
  23. Biochemistry v.33 Kinetic mechanism of adenine nucleotide binding toand hydrolysis by the Escherichia coli Rep monomer: 1. Use of fluoescent ncleoride analogues Moore,K.J.;T.M.Lohman https://doi.org/10.1021/bi00252a023
  24. Anal. Biochem. v.117 One-step molybdate method for rapid determination of inorganic phosphate in the pressence of protein Piper,J.M.;S.J.Livell https://doi.org/10.1016/0003-2697(81)90693-X
  25. Biochemistry v.29 Interaction of myosin subfragment 1 with fluorescent ribosemodified nucleotides: A compatison of vanadate trapping and SH1-SH2-cross-linking Cremo,C.R.;J.M.Neuron;R.G.Yount https://doi.org/10.1021/bi00465a023
  26. Biochemistry v.30 Kinetics of the interaction of 2'(3')-O-(N-methylanthraniloyl)-ATP with myosin sunfragment 1 and actomyosin subfragment: 1. Characterization of two acto-S1-ACP complexs Woodward,S.K.;J.F.Eccleston;M.A.Geeves https://doi.org/10.1021/bi00216a017
  27. Molecular Cell v.3 The structural basis for terminator recognition by the Rho transcription termination factor Bogden,C.E.;D.Fass;N.Bergman;M.D.Nichols;J.M.Berger https://doi.org/10.1016/S1097-2765(00)80476-1
  28. J. Struct. Biol. v.114 A structural model for the Escherichia coli DnaB helicase based on electron microscopy data Martin,M.C.S.;N.P.Stamford;N.Dammerova;N.E.Dixon;J.M.Carazo https://doi.org/10.1006/jsbi.1995.1016
  29. J. Mol. Biol. v.259 The hexameric E. coli DnaB helicase can exist in different quaternary states Yu,X.;M.J.Jezewska;W.Bujalowski;E.H.Egelman https://doi.org/10.1006/jmbi.1996.0297