Partitioning of Recombinant Human Granulocyte-Macrophage Colony Stimulating Factor (hGM-CSF) from Plant Cell Suspension Culture in PEG/Sodium Phosphate Aqueous Two-phase Systems

  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, Silla University) ;
  • Loc, Nguyen-Hoang (Faculty of Sciences, Hue University, Hue, Vietnam, Faculty of Biological Sciences, Chonbuk National University) ;
  • Kwon, Tae-Ho (Basic Science Research Institute, Chonbuk National University) ;
  • Yang, Moon-Sik (Faculty of Biological Sciences, Chonbuk National University)
  • 발행 : 2004.01.01

초록

Partitioning of human granulocyte-macrophage colony stimulating factor (hGM-CSF) was achieved in the aqueous two-phase systems (ATPSs) using a crude extract of transgenic tobacco cell suspension culture. This study examined the effects of polyethylene glycol (PEG) molecular weight and concentration and the effects of sodium phosphate concentration in different PEG/sodium phosphate systems on the partition coefficient, K. The best ATPS system was 5% PEG 8,000/1.6 M sodium phosphate after 2 h of incubation at room temperature. In this system, hGM-CSF was partitioned in the PEG-rich phase with a yield of 57.99% and K$\_$hGM-CSF/ of 8.12. In another system, 3% PEG 10,000/1.6 M sodium phosphate, hGM-CSF was also partitioned primarily in the top phase with a yield of 45.66% and K$\_$hGM-CSF/ of 7.64 after 2 h of incubation at room temperature.

키워드

참고문헌

  1. Biotechnol. Prog v.1 Commercializing plant tissue culture processes: Economic, Problems, and prospects Sahai,O.;M.Knuth https://doi.org/10.1002/btpr.5420010104
  2. Protein Expr. Purif. v.19 Production and characterization of biologically ative human GM-CSF secreted by genetically modified plant cells James,E.A.;C.Wang;Z.Wang;R.Reeves https://doi.org/10.1006/prep.2000.1232
  3. J. Biotechnol v.96 Increased prodyction of the human granulocyte-macrophage colony stimulating factor by addition of stabilizing polymer in plant suspension cultures Lee,J.H.;N.S.Kim;T.H.Keon;Y.S.Jang;M.S.Yang https://doi.org/10.1016/S0168-1656(02)00044-5
  4. Enzyme Microb. Technol. v.30 The effect of osmotic pressure on prodyction of recombinant human granulicyte-macrophage colony stimulating factor in plant suspension culture Lee,J.H.;N.S.Kim;T.H.Kwon;M.S.Yang https://doi.org/10.1016/S0141-0229(02)00056-X
  5. Protein Expr. Purif. v.13 Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture Maguson,N.;P.M.Linzmaier;R.Reeves;G.An;K.HayGlass;J.M.Lee https://doi.org/10.1006/prep.1998.0872
  6. Curr. Opin. Biotechnol. v.11 Foreign protein production in plant tissue cultures Doran,P.M. https://doi.org/10.1016/S0958-1669(00)00086-0
  7. Curr. Opin. Biotechnol. v.10 Production of new/modified proteins in transgenic plants Herbers,K.;U.Sonnewald https://doi.org/10.1016/S0958-1669(99)80029-9
  8. Science v.229 The granulocyte-macriohage colony-stimulating factors Metcalf,D. https://doi.org/10.1126/science.2990035
  9. J. Infect. Disease v.172 Granulocyte-colony-stimulating factor (G-CSF): Role in relationships in infectious diseases Dale,D.C.;W.C.;Liles;W.R.Summer https://doi.org/10.1093/infdis/172.4.1061
  10. DNA v.6 Expression and purification of native human granulocyte-macrophage colony-stimulating factor from an Escherichia coli secretion vector Libby,R.T.;G.Braedt;S.R.Kronheim;C.J.March;D.L.Urdal;T.A.Chiaverotti;R.J.Tushinski;D.Y.Mochizuki;T.P.Hopp;D.Cosman https://doi.org/10.1089/dna.1987.6.221
  11. Eur. J. Biochem. v.251 Characterization of the microheterogenetics of PLXY321, a generically engineered granulocyte-macrophage colony-stimulating factor/interleukin-3 fusion protein expressed in yeast Balland,A.D.;A.Krasts;K.L.Hoch;M.J.Gerhart;K.E.Stremler;S.M.Waugh https://doi.org/10.1046/j.1432-1327.1998.2510812.x
  12. J. Microbiol. Biotechnol. v.10 Expression of murine GM-CSF in reconbinant Aspergillus niger Kim,M.J.;T.H.Kwon;Y.S.Jang;M.S.Yang;D.H.Kim
  13. FEBS Lett. v.259 Expression of human granulocyte-macrophage colony-stimulating factor gene in insect cells by a baculovirus vector Chiou,C.J.;M.C.Wu https://doi.org/10.1016/0014-5793(90)80020-J
  14. Science v.254 Control of granulocytes and macrophages: molecular, cellular, and clinical aspects Metcalf,D.
  15. J. Chromatogr v.B734 Partial purification of penicillin acylase from Escherichia coli in poly (erhylene glycol)-sodium citrate aqueous two-phase systems Marcos,J.C.;L.P.Fonseca;M.T.Ramalho;J.M.S.Cabral
  16. Carbohydr. Polymer v.46 Phase equilibrium and protein partitioning in aqueous mixtures of maltodextrin with polypropulene glycol Silva,L.H.M.;A.J.A.Meirelles https://doi.org/10.1016/S0144-8617(00)00324-6
  17. Appl. Microbiol. Biotechnol. v.54 Aqueous two-phase: The system if cgiuce fir extracruve fernentatioin Sinha,J.;P.K.Dey;T.Panda https://doi.org/10.1007/s002530000342
  18. Biotechnol. Lett. v.22 Extractive cultivation of Lacrococus lactis using a poly (ethylene glycol)/MgSO₄·7H₂O aueous two-phase systems to prodyce nisin Li,C.;F.Ouyang;J.Bai https://doi.org/10.1023/A:1005634626801
  19. Physiol. Plant. v.15 A revised medium for rapid growth and bioassays with tobacco tissue culture Murashige,T.;F.Skoog https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Biochim. Biophys. Acta. v.27 Particla fractionation in liquid two-phase systems Albertsson,P.A. https://doi.org/10.1016/0006-3002(58)90345-7
  21. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye bining Bradford,M.M https://doi.org/10.1016/0003-2697(76)90527-3
  22. Physiol. Plant. v.74 Physiological and biochemical characterization of a suspension culture system for sustained expnential growth of Nicotiana sylvestris Bonner,C.A.;C.Keyon;R.A.Jensen https://doi.org/10.1111/j.1399-3054.1988.tb04933.x