초록
We have studied the optimal phase retardation value of a homogeneously aligned liquid crystal (LC) driven by fringe-field when using the LC with positive dielectric anisotropy. In general, the transmittance of a homogeneous aligned LC cell under crossed polarizer is maximum when a twist angle of LC by in-plane rotation is 45$^{\circ}$ with polarizer and the cell retardation becomes λ/2. However, the device using the LC with positive dielectric anisotropy does not follow this since the degree of rotation of the LC is dependent on electrode position and in addition the LCs tilt up along the fringe-field. At the center of common and pixel electrode, the LC is most twisted around a middle position of a cell whereas at the edge position of pixel electrode, the LC is most twisted near bottom surface of a cell. Consequently, the optimal phase retardation of the device becomes much larger than λ/2 and the transmittance can be described using the combination of the in-plane switching and twisted nematic mode.