초록
인터넷의 발달로 네트워크 트래픽은 현저하게 증가되었다. 트래픽의 폭증은 전체 네트워크의 성능에 크게 영향을 미치게 되었으며 트래픽의 관리가 망 관리의 중요한 이슈로 되었다. 본 논문에서는 네트워크 트래픽을 분석하여 효율적인 대응을 수립하기 위해 예측하는 시계열 모형의 적합성을 검증한다. 네트워크 트래픽을 예측하기 위해서는 시간적 흐름에 따라 자료간의 상관 관계를 유추하고, 이 관계를 이용하여 예측을 수행한다. 상관 관계를 유추하는 과정에서 필연적으로 확률적 오류를 포함하게 되는데, 정확한 예측을 위해서는 확률적 오차를 최소화해야 한다. 따라서, 통계학 분야에서 예측 방법으로 널리 쓰이는 시계열 모형인 AR, MA, ARMA, ARIMA 모형을 사용하여 네트워크 트래픽을 예측함과 동시에, 예측하는 과정에서 정확한 예측을 수행할 수 있는지에 대한 적합성을 검증하고자 한다. 적합성 검증은 모형 식별 단계에서 초기 단계인 정상성 가정을 만족하는지의 여부로 판단하며. 정상성 가정은 자기상관함수와 편자기상관함수를 통해 구할 수 있다. 정상성 가정을 만족하지 못하는 모형은 비정상 시계열 자료로 분류되는데 이 경우의 예측은 정확하다고 볼 수 없다. 따라서, 정확한 예측을 수행할 수 있도록 시계열 자료의 정상성 가정을 만족하도록 모형을 분류하는 방안을 제시하고자 한다. 정확한 예측을 수행하면, 네트워크 트래픽을 좀 더 나은 방법으로 관리하며, 예측 결과를 이용하여 동적인 트래픽의 관리가 가능하게 된다.
With a rapid growth in the Internet technology, the network traffic is increasing swiftly. As for the increase of traffic, it had a large influence on performance of a total network. Therefore, a traffic management became an important issue of network management. In this paper, we study a forecast plan of network traffic in order to analyze network traffic and to establish efficient correspondence. We use time series forecast models and determine fitness whether the model can forecast network traffic exactly. In order to predict a model, AR, MA, ARMA, and ARIMA must be applied. The suitable model can be found that can express the nature of traffic for the forecast among these models. We determines whether it is satisfied with stationary in the assumption step of the model. The stationary can get the results by using ACF(Auto Correlation Function) and PACF(Partial Auto Correlation Function). If the result of this function cannot satisfy then the forecast model is unsuitable. Therefore, we are going to get the correct model that is to satisfy stationary assumption. So, we proposes a way to classify in order to get time series materials to satisfy stationary. The correct prediction method is managed traffic of a network with a way to be better than now. It is possible to manage traffic dynamically if it can be used.