Synthesis and Antioxidant Properties of Some Novel Benzimidazole Derivatives on Lipid Peroxidation in the Rat Liver

  • Canan Kus (Department of Pharmaceutical Chemistry Ankara University) ;
  • Gulgun, Ayhan-Kilcigil (Department of Toxicology, Faculty of Pharmacy, Ankara University) ;
  • Eke, Benay-Can (Department of Toxicology, Faculty of Pharmacy, Ankara University) ;
  • Mumtaz Iscan (Department of Toxicology, Faculty of Pharmacy, Ankara University)
  • Published : 2004.02.01

Abstract

Some benzimidazole derivatives namely 1-[(substituted thiocarbamoylhydrazine carbonyl) methyl]-2-phenyl-1 H-benzimidazoles (1a-13a), N-[(2-phenylbenzimidazol-1-yl methyl)-[1,3,4]-thiadiazole-2-yl]-substituted phenyl amines (1b-13b) and 5-(2-phenyl benzimidazol-1-yl-methyl)-4-substituted phenyl-4H-1,2,4-triazole-3-thiones (1c-13c) were synthesized, and their in vitro effects on the rat liver microsomal NADPH-dependent lipid peroxidation (LP) levels were determined. The most active compound 10a caused an 84% inhibition of LP at $10^{-3}$ M, which is better than that of butylated hydroxytoluene (BHT) (65%).

Keywords

References

  1. Abdel-Rahman, A. E., Mahmoud, A. M., EI-Naggar, G. M., and EI-Sherief, H. A., Synthesis and biological activity of some new benzimidazolyl-azetidin-2-ones and thiazolidin-4-ones. Pharmazie, 38, 589-590 (1983)
  2. Andreadou, I., Tasouli, A., Bofilis, E., Chrysselis, M., Rekka, E., Tsantili-Kakoulidou, A., lliodromitis, E., Siatra, T., and Kremastinos, D. T., Antioxidant activity of novel indole derivatives and protection of the myocardial damage in rabbits. Chem. Pharm. Bull., 50,165-168 (2002) https://doi.org/10.1248/cpb.50.165
  3. Bishayee, S. and Balasubramanian, A. S., Lipid peroxide formation in rat brain. Neurochem., 18, 909-920 (1971) https://doi.org/10.1111/j.1471-4159.1971.tb12020.x
  4. Boschelli, D. H., Connor, D. T., Bornemeier, D. A, Dyer, R. D., Kennedy, J. A, Kuipers, P. J., Okonkwo, G.C., Schrier, D. J., and Wright, C. D., 1,3,4-Oxadiazole, 1,3,4-thiadiazole, and 1,2,4-triazole analogs of the fenamates: In vitro inhibition of cyclooxygenase and 5-lipoxygenase activities. J. Med. Chem., 36,1802-1810 (1993) https://doi.org/10.1021/jm00065a002
  5. Can-Eke, B., Puskullu, M. O., Buyukbingol, E., and Iscan, M., A study on the antioxidant capacities of some benzimidazoles in rat tissues. Chemico-Biological Interactions, 113, 65-77 (1998)
  6. Coburn, R. A, Clark, M. T., Evans, R. T., and Genco, R. J., Substituted 2-(2-hydroxyphenyl)benzimidazoles as potential agents for the control of periodontal diseases. J. Med. Chem., 30, 205-208 (1987) https://doi.org/10.1021/jm00384a035
  7. Dziewonska, M., Infra-red spectra of some 3,4,5-substituted derivatives of 1,2,4-triazole. SPECTR. ACTA, 23A, 1195-1204 (1967)
  8. Fukuda, T., Morimoto, Y, lemura, R., Kawashima, T., Tsukamoto, G., and lto, K., Effects of 1-(2-ethoxyethyl)-2-(4-methyl-1-homopiperazinyl)- benzimidazole difumarate (KB-2413), a new antiallergic, on chemical mediators. Arzneim.-Forsch./ Drug Res., 34, 801-805 (1984a)
  9. Fukuda, T., Saito, T., Tajima, S., Shimohara, K., and Ito, K., Antiallergic effect of 1-(2-ethoxyethyl)-2-(4-methyl-1-homo-piperazinyl)- benzimidazole difumarate (KB-2413). Arzneim.-Forsch./ Drug Res., 34, 805-810 (1984b)
  10. Goker, H., Kus, C., Boykin, D. w., Yildiz, S., and Altanlar, N., Synthesis of some new 2-substitutedphenyl-1H-benzimidazole-5-carbonitriles and their potent activity against candida species. Bioorg. Med. Chem., 10, 2589-2596 (2002) https://doi.org/10.1016/S0968-0896(02)00103-7
  11. Griffits, H. R., Lunec, J., In Aruoma, O. I., and Halliwell, B., (Eds.), Molecular Biology of Free Radicals in Human Diseases, Oica International, London, pp. 327-366 (1998)
  12. Habernickel, V. J., Alkyl-5-heterocyclic-benzimidazolyl-car-bamate Derivatives. Drugs made in Germany, 35, 97 (1992)
  13. Habib, N. S., Abdel-Hamid, S., and EI-Hawash, M., Synthesis of benzimidazole derivatives as potential antimicrobial agents. Farmaco., 44,1225-1232 (1989)
  14. Heaney, H. and Ley, S. V., N-Alkylation of indole and pyroles in dimethyl sulphoxide. J. Chem. Soc. Perkin 1,499 (1973) https://doi.org/10.1039/p19730000499
  15. Islam, I., Skibo, E. B., Dorr, R. T., and Alberts, D. S., Structure-activity studies of antitumor agents based on pyrrolo[1,2-a] benzimidazoles: new reductive alkylating DNA cleaving agents. J. Med. Chem., 34, 2954-2961 (1991) https://doi.org/10.1021/jm00114a003
  16. Iscan, M., Arinc, E., Vural, N., and Iscan, M. Y, In vivo effects of 3-methylcholantrene, phenobarbital, pyretrum and 2.4.5-T isooctylester on liver, lung and kidney microsomal mixed-function oxidase system of guinea-pig: a comparative study, Comp. Biochem. Physiol., 77C, 177-190 (1984)
  17. Jerchel, D., Kracht, M., and Krucker, K., Untersuchungenuber benzimidazole. Jus. Lie. Ann. Chem., 590, 232-241 (1954) https://doi.org/10.1002/jlac.19545900305
  18. Kappus, H. A, A survey of chemicals inducing lipid peroxidation in biological systems. Chem. Phys. Lipids, 45, 105-115 (1987) https://doi.org/10.1016/0009-3084(87)90062-4
  19. Khairnar, V. L., Lockhande, S. R., Patel, M. R., and Khadse, B. G., Synthesis and Screening for Antitubercular Activity of Antioxidant Effect of Benzimidazole Derivatives Substituted-S-(pyrimidyl or quinolyl)-2-(thino or sulfonyl)-benzimidazoles, Bull. Haffkine lnst. 8(1980)67-70
  20. Khairnar, V. L., Lockhande, S. R., Patel, M. R., and Khadse, B. G., Synthesis and Screening for Antitubercular Activity of Antioxidant Effect of Benzimidazole Derivatives Substituted-S-(pyrimidyl or quinolyl)-2-(thio or sulfonyl)-benzimidazoles, Chemical Abstract, 95, 203833h, (1981)
  21. Kllclgil, G. A., Tuncbilek, M., Altanlar, N., and Goker, H., Synthesis of some new benzimidazolecarboxamides and evaluation of their antimicrobial activity. Farmaco, 54, 562-565 (1999) https://doi.org/10.1016/S0014-827X(99)00059-2
  22. Kruse, L. I., Ladd, D. L., Harrsch, P B., McCabe, F L., Mong, S. M., Faucette, L., and Johnson, R, Synthesis, Tubulin binding, antineoplastic evaluation, and structure-activity relationships of oncodazole analogues. J. Med. Chem., 32, 409-417 (1989) https://doi.org/10.1021/jm00122a020
  23. Nakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H., and Satoh, T., Synthesis of benzimidazole derivatives as antiallergic agents 5-lipoxygenase inhibiting action. Chem. Pharm. Bull., 47, 1573-1578 (1999) https://doi.org/10.1248/cpb.47.1573
  24. Nakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H., and Satoh, T., Synthesis and biological activities of novel antiallergic agents with 5-lipoxygenase inhibiting action. Bioorg. Med. Chem., 8, 373-380 (2000) https://doi.org/10.1016/S0968-0896(99)00291-6
  25. Rice-Evans, C. and Diplock, A. T., Techniques in Free Radical Research, p. 291, Elsevier, Amsterdam, (1991)
  26. Ridley, H. F, Spickett, R. G. W., and Timmis, G. M., A new synthesis of benzimidazoles and aza analogs. J. Heterocyclic Chem., 2, 453-456 (1965) https://doi.org/10.1002/jhet.5570020424
  27. Shams, EI-Dine, S. A. and Hazzaa, A. A. B., Synthesis of compounds with potential fungicidal activity. Pharmazie, 29, 761-763 (1974)
  28. Siatra-Papastaikoudi, T., Tsotinis, A., Raptopoulou, C. P., Sambani, C., and Thomou, H., Synthesis of new alkylamino-alkylthiosemicarbozones of 3- acetylindole and their effect on DNA synthesis and cell proliferation. Eur. J. Med. Chem., 30, 107-114 (1995) https://doi.org/10.1016/0223-5234(96)88215-8
  29. Smith P. A. S., In: Adams R., Bachmann W. E., Fieser L. F., Johnson J. R., Snyder H. R. (Eds) Organic Reactions, John Wiley & Sons, Inc. London: Chapman & Hall, Limited, Volume III, pp. 337-389 (1949)
  30. Soliman, F. S. G., Rida, S. M., Badawey, E. A. M., and Kappe, T., Synthesis of substituted 3-hydroxy-1H,5H-pyrido[1,2-a]benzimidazol-1-ones as possible antimicrobial and antineoplastic agents. Arch. Pharm., 317, 951-958 (1984). https://doi.org/10.1002/ardp.19843171110
  31. Tsotinis, A., Varvaresou, A., Calogeropoulou, T., Siatra-Papastaikoudi, T., and Tiligada, A., Synthesis and antimicro-bial evaluation of indole containing derivatives of 1,3,4-thiadiazole 1,2,4-triazole and their open-chain counterparts. Arzneim.-Forsch./Drug Res., 47, 307-310 (1997)
  32. Varvaresou, A., Siatra-Papastaikoudi, T., Tsotinis, A., Tsantili-Kakoulidou, A., and Vamvakides, A., Synthesis, lipophilicity, and biological evaluation of indole-containing derivatives of 1,3,4-thiadiazole and 1,2,4-triazole. Farmaco., 53, 320-326 (1998) https://doi.org/10.1016/S0014-827X(98)00024-X
  33. Wills, E. D., Mechanism of lipid peroxide formation in animal tissues. Biochem. J., 99, 667-676 (1966)
  34. Wills, E. D., Lipid peroxide formation in microsomes. Relationship of hydroxylation to lipid peroxide formation. Biochem. J., 113,333-341 (1969)
  35. Witkowski, J. T., Robins, R. K., Khare, G. P., and Sidwell, R. W., Synthesis and antiviral activity of 1,2,4-triazole-3-thiocarboxamide and 1,2,4-triazole-3-carboxamidine ribonucleosides. J. Med. Chem., 16, 935-937 (1973) https://doi.org/10.1021/jm00266a014