Cross-reactivity and Protective Immunity of Streptococcus pneumonieae ClpP

페렴구균 ClpP의 면역 교차 반응과 방어효과

  • Published : 2004.02.01

Abstract

ClpP is a stress-inducible protein and proteolytic subunit of the ATP-dependent Clp protease in prokaryotes and eukaryotes. Although its physiological roles in bacterial virulence were widely studied in various organsims, including Streptococcus pneumoniae, until now the immunological effect has not been investigated. Here, we have examined the cross reactivity of S. pneumoniae ClpP antibody with other organisms's cell lysate proteins. Although the protein sequence of S. pneumoniae ClpP was highly conserved among various organisms including human, the antibody rasised by S. pneumoniae ClpP was not cross-reacted with other organism's cell lysates, which were Saccharomyces cerevisiae , human lung A549 cell, Bacillus subtilis, Pseuomonas aeruginosa, E. coli, and Salmonella typhi. It was only reacted with S. pneumoniae and Lato-bacillus thermophilus. Thus we examined the immunoprotective effect of ClpP by immunizing mice with the purified ClpP. The mean survival time of mouse was significantly increased with the ClpP immunization. These results suggest that S. pneumoniae ClpP could be used as a vaccine candidate for prevention of S. pneumoniae infection.

Keywords

References

  1. Infect. Immun. v.61 Phenotypic modulation by Legionella pneumophila upon infection of macrophages Abu Kwaik,Y.;Eisenstein,B.I.;Engleberg,N.C.
  2. Microbiol. Rev. v.59 Streptococcus pneumoniae: virulence factors, pathogenesis, and vacciness AlonsoDeVelasco,E.;Verheul,A.F.;Verhoef,J.;Snippe,H.
  3. J. Exp. Med. v.79 Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductio of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type Ⅲ Avery,O.T.;MacLeod,C.M.;McCarty,M. https://doi.org/10.1084/jem.79.2.137
  4. J. Infect. Dis. v.188 no.3 Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae Briles,D.E.;Hollingshead,S.K.;Paton,J.C.;Ades,E.W.;Novak,L.;van Ginkel,F.W.;Benjamin,W.H.jr. https://doi.org/10.1086/376571
  5. Science v.248 Induction of Salmonella stress proteins upon infection of macrophages Buchmeier,N.A.;Heffron,F. https://doi.org/10.1126/science.1970672
  6. J. Bacteriol. v.183 Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival Chastanet,A.;Prudhomme,M.;Claverys,J.P.;Msadek,T. https://doi.org/10.1128/JB.183.24.7295-7307.2001
  7. Mol. Microbiol. v.35 The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes Gaillot,O.;Pellegrini,E.;Bregenholt,S.;Nair,S.;Berche,P. https://doi.org/10.1046/j.1365-2958.2000.01773.x
  8. Genes Dev. v.11 Protein quality control: triage by chaperones and proteases Gottesman,S.;Wickner,S.;Maurizi,MR. https://doi.org/10.1101/gad.11.7.815
  9. WO-9640928 A1 Hamel,J.;Brodeur,B.;Martin,D.;Rioux,C.
  10. Microb. Pathog. v.23 Heat shock response of Streptococcus pneumoniae: identification of immunoreactive stress proteins Hamel,J.;Martin,D.;Brodeur,B.B. https://doi.org/10.1006/mpat.1996.0124
  11. EMBO J. v.21 Cooperative kinetics of both Hsp104ATPase domains and interdomain communication revealed by AAA sensor-1 mutants Hattendorf,D.A.;Lindquist,S.L. https://doi.org/10.1093/emboj/21.1.12
  12. Proc. Natl. Acad. Sci. USA v.82 Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70 Hunt,C.R.;Morimoto,R.I. https://doi.org/10.1073/pnas.82.19.6455
  13. Zinsser Microbiology Joklik,W.K.;Willett,H.P.;Amos,D.B.;Wilfert,C.M.
  14. FEMS Microbiol. Lett. v.161 Molecular cloning, expression,and characterization of dnaK in Streptococcus pneumoniae Kim,S.W.;Choi,I.H.;Kim,S.N.;Kim,Y.H.;Pyo,S.N.;Rhee,D.K. https://doi.org/10.1111/j.1574-6968.1998.tb12951.x
  15. EMBO J. v.20 Clp-mediated proteolysis in Gram-positie bacteria is auto-regulated by the stability of a repressor Kruger,E.;Zuhlke,D.;Witt,E.;Ludwig,H.;Hecker,M. https://doi.org/10.1093/emboj/20.4.852
  16. Infect. Immun. v.71 Effect of heat shock and mutation in ClpL and ClpP on virulence gene expression in Streptococcus pneumoniae Kwon,H.Y.;Kim,S.W.;Choi,M.H.;Ogunniyi,A.D.;Paton,J.C.;Park,S.H.;Pyo,S.N.;Rhee,D.K. https://doi.org/10.1128/IAI.71.7.3757-3765.2003
  17. J. Apppl. Pharmacol. v.9 Cloning and immunological characterization of the 84-kDa heat shock protein, ClpL, in Streptococcus pneumoniae Kwon,H.Y.;Kim,Y.W.;Choi,H.J.;Park,Y.J.;Pyo,S.N.;Rhee,D.K.
  18. Clin. Otolaryngol. v.27 Nasal mucosal temperature during respiration Lindemann,J.;Leiacker,R.;Rettinger,G.;Keck,T. https://doi.org/10.1046/j.1365-2273.2002.00544.x
  19. Annu. Rev. Biochem. v.55 The heat shock response Lindquist,S. https://doi.org/10.1146/annurev.bi.55.070186.005443
  20. J. Biol. Chem. v.265 ClpP represents a unique family of serine proteases Maurizi,M.R.;Clark,W.P.;Kim,S.H.;Gottesman,S.
  21. J. Bacteriol. v.174 Environmental signals controlling expression of virulence genes determinants in bacteria Mekalanos,J.J. https://doi.org/10.1128/jb.174.1.1-7.1992
  22. Stress proteins in biology and medicine Morimoto,R.I.;Tissieres,A.;Georgopoulos,C.
  23. J. Bacteriol. v.156 Isolation and characterization of three new classes of transformation deficient mutants of Streptococcus pneumoniaethat are defective in DNA transport and genetic recombination Morrison,D.A.;Lacks,S.A.;Guild,W.R.;Hageman,J.M.
  24. Transplantation v.59 Increased expression of IL-4 and IL-10 and decreased expression of IL-2 and interferon-gamma in long-surviving mouse heart allografts after brief CD4-monoclonal antibody therapy Mottram,P.L.;Han,W.R.;Purcell,L.J.;McKenzie,I.F.;Hancock,W.W. https://doi.org/10.1097/00007890-199559040-00021
  25. Mol. Microbiol. v.27 ClpP of Bacillus subtilisis required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation Msadek,T.;Dartois,V.;Kunst,F.;Herbaud,M.L.;Denizot,F.;Rapoport,G. https://doi.org/10.1046/j.1365-2958.1998.00735.x
  26. Infect. Immun. v.68 ClpC ATPase is required for cell adhesion and invasion of Listria monocytogenes Nair,S.;Milohanic,E.;Berche,P. https://doi.org/10.1128/IAI.68.12.7061-7068.2000
  27. E. coli and Salmonella typhimurium: Cellular and molecular biology Heat shock response Neidhardt,F.C.;VanBogelen,R.A.;F.C.Neidhardt(ed.);J.L.Ingraham(ed.);K.B.Low(ed.);B.Magasanik(ed.);M.Schaechter(ed.);H.E.Umbarger(ed.)
  28. Infect. Immun. v.68 Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae Ogunniyi,A.D.;Folland,R.L.;Briles,D.E.;HOllingshead,S.K.;Paton,J.C. https://doi.org/10.1128/IAI.68.5.3028-3033.2000
  29. Genes Cells v.6 AAA+ superfamily ATPases: common structure-diverse function Ogura,T.;Wilkinson,A.J. https://doi.org/10.1046/j.1365-2443.2001.00447.x
  30. N.Engl. J. Med. v.333 no.8 Resistance to penicillin and cephalosporin and mortality from severe pneumococcal pneumonia in Barcelona, Spain Pallares,R.;Linares,J.;Vadillo,M.;Cabellos,C.;Manresa,F.;Viladrich,P.F.;Martin,R.;Gudiol.F. https://doi.org/10.1056/NEJM199508243330802
  31. Mol. Microbiol. v.26 The ClpP protein, a subunit of the Clp protease, modulates ail gene expression in Yersinia enterocolitica Pederson,K.J.;Carlson,S.;Pierson,D.E. https://doi.org/10.1046/j.1365-2958.1997.5551916.x
  32. Trends Biochem. Sci. v.21 HSP100/CIp proteins: a common mechanism explains diverse functions Schirmer,E.C.;Glover,J.R.;Singer,M.A.;Lindquist,S.
  33. Science v.265 Pneumococcal disease: Prospects for a new generation of vaccines Siber,G.R. https://doi.org/10.1126/science.8073278
  34. Curr. Opin, Microbiol v.2 no.1 Molecular and cellular biology of pneumococcal infection Tuomanen,E. https://doi.org/10.1016/S1369-5274(99)80006-X
  35. Mol. Micribiol v.34 Effects of DksA and ClpP protease on sigma S production and virulence in Salmonella typhimurium Webb,C.;Moreno,M.;Wilmes-Riesenberg,M.;Curtiss Ⅲ,R.;Foster,J.W. https://doi.org/10.1046/j.1365-2958.1999.01581.x