Pharmacokinetic Interaction between Nifedipine and Paclitaxel in Rats

니페디핀과 파크리탁셀의 약물동태학적 상호작용

  • Published : 2004.02.01

Abstract

The purpose of this study was to investigate the effect of coadministration and 3 days-pretreatmemt of niledipine (2, 10 mg/kg) on the pharmacokinetic parameters and bioavailability of paclitaxel (50 mg/kg) after oral administration in rats. Coadministration of nifedipine with paclitaxel did alter the $C_{max}$ (115${\pm}$29 ng/ml without nifedipine; 135${\pm}$35 ng/ml with nifedipine (10 mg/kg): p<0.05) and AUC (188${\pm}$459 ng/mlㆍhr with-out nifedipine; 2546${\pm}$642 ng/mlㆍhr with nifedipine; p<0.05). Three days treatment of nifedipine on the prior to paclitaxel administration increased the $t_{1/2}$ 〔9.90${\pm}$2.47 hr without nifedipine; 12.37${\pm}$3.12 hr with nifedipine (2 mg/kg): 12.83${\pm}$3.32 hr with nifedipine (10 mg/ml); p<0.05] and AUC [1833${\pm}$459 ng/mlㆍhr without nifedipine; 2663${\pm}$648 ng/mlㆍhr with nifedipine (2 mg/kg): 3006${\pm}$734 ng/mlㆍhr with nifedipine (10 mg/ml): p <0.05]. Drug interaction between nifedipine and paclitaxel decreased the elimination rate constant and increased the oral bioavailability of paclitaxel. On the basis of the results of this study, it might be considered that nifedip ine may inhibit cytochrome P450, which are engaged in paclitaxel metabolism, result in increased $t_{1/2}$ and AUC of paclitaxel. However, further study should be conducted to clarify the roles of cytochrome P450 and P-glycoprotein on paclitaxel bio-availability wit/or without nifedipine.

Keywords

References

  1. Cancer Treat. Rep. v.71 Phase I trial of taxol in patients with advanced malignancies Donehower,R.C.;Rowinsky,E.K.;Grochow,L.B.(et al.)
  2. J. Clin. Oncol. v.5 Phase I study of taxol using a 50day intermittent schedule Legha,S.S.;Tenney,D.M.;Krakhoff,I.R. https://doi.org/10.1200/JCO.1987.5.8.1232
  3. Invest. New. Drugs. v.9 A phase Ⅱ study of taxol in patients with malignant melanoma Einzig,A.I.;Hochster,H.;Wiernik,P.H.(et al.)
  4. Ann. Intern. Med. v.111 Taxol: A unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasm. McGuire,W.P.;Rowinsky,E.K.;Rosenheim,N.B.(et al.) https://doi.org/10.7326/0003-4819-111-4-273
  5. J. Clin. Oncol. v.10 Phase Ⅱ study and long-term follow up of patients treated with taxol for advanced ovarian adenocarcinoma Einzig,A.I.;Wiernik,P.H.;Sasloff,J.(et al.) https://doi.org/10.1200/JCO.1992.10.11.1748
  6. Cancer Invest v.9 Phase Ⅱ trial of taxol in patients with metastatic renal cell carcinoma Einzig,A.I.;Gorowski,E.;Sadloff,J.(et al.) https://doi.org/10.3109/07357909109044223
  7. J. Clin. Oncol. v.10 Phase I study of taxol and granulocyte stimulation factor in patients with refractory ovarian cancer Sarosy,G.;Kohn,E.;Stone,D.A.(et al.) https://doi.org/10.1200/JCO.1992.10.7.1165
  8. J. Clin. Oncol. v.5 Phase I trial of taxol given as a 24-hour infusion every 21 days: Responses seen in metastatic melanoma Wiernik,P.H.;Schwartz,E.L.;Einzig,A.(et al.) https://doi.org/10.1200/JCO.1987.5.8.1232
  9. Cancer Treat. Rep. v.71 Phase I study of taxol administered as a short iv infusion daily for 5 days Grem,J.L.;Tutsch,K.D.;Simon,K.L.(et al.)
  10. J. Clin. Oncol. v.9 Sequences of taxol and cisplatin: A Phase I and pharmacologic study Rowinsky,E.K.;Gilbert,M.R.;McGuire,W.P.(et al.) https://doi.org/10.1200/JCO.1991.9.9.1692
  11. Adv. Drug Deliv. Rev. v.27 The barrier function of CYP3A4 and Pglycoprotein in the small bowel. Watkins,P.B. https://doi.org/10.1016/S0169-409X(97)00041-0
  12. J. Pharm. Sci. v.87 Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics Wacher,V.H.;Silverman,J.A.;Zhang,Y.;Benet,L.Z. https://doi.org/10.1021/js980082d
  13. Pharm. Res. v.16 Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption-theoretical approach Ito,K.;Kusuhara,H.;Sugiyama,Y. https://doi.org/10.1023/A:1018872207437
  14. Cancer Res. v.54 Selective biotransformation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8 Rahman,A.;Korzekwa,K.R.;Grogan,J.;gonzalez,F.J.;Harris,J.W.
  15. J. Pharmacol. Exp. Ther. v.275 Variability in human cytochrome P450 paclitaxel metabolism Sonnichsen,D.S.;Liu,Q.;Schuetz,E.G.;Schuetz,J.D.;Pappo,A.;Relling,M.V.
  16. Biochem. Pharmacol. v.46 Short communication; Taxol metabolism in rat hepatocytes Walle,T. https://doi.org/10.1016/0006-2952(93)90336-U
  17. Clin. Pharmacokinet v.27 Clinical Pharma-cokinetics of paclitaxel Sonnichsen,D.S.;Relling,M.V. https://doi.org/10.2165/00003088-199427040-00002
  18. Cancer Res. v.54 Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Harris,J.W.;Rahman,A.;Kim,B.R.;Guengerich,F.P.;Collins,J.M.
  19. Am. J. Cardiol. v.46 Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem Henry,P.D. https://doi.org/10.1016/0002-9149(80)90366-5
  20. Drugs v.30 Nifedipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in ischaemic heart disease, hypertension and relatd cardiovascular disorders Sorkin,E.M.;Clissold,S.P.;Brogden,R.N. https://doi.org/10.2165/00003495-198530030-00002
  21. J. Med. Chem. v.4 Oxidation of dihydro-pyridine calcium channel blockers and analogues by human liver cytochrome P-450 ⅢA4 Guengerich,F.P.;Brian,W.R.;Iwasaki,M.;Sari,M.A.;Baarnhielm,C.;Berntsson,P.
  22. Br. J. Pharmacol. v.118 Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial(Caco-2) cells Cavet,M.E.;West,M.;Simmons,N.L. https://doi.org/10.1111/j.1476-5381.1996.tb15550.x
  23. Cancer Res. v.43 Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers Tsuruo,T.;Iida,M.;Nojiri,H.;Tsukagoshi,S.;Sakurai,Y.
  24. Br. J. Cancer v.50 Restoration of doxorubicin responsiveness in doxorubicin-resistant P388 murine leukaemia cells Ramu,A.;Spanier,R.;Rahamimoff,H.;Fuks,Z. https://doi.org/10.1038/bjc.1984.207
  25. Br. J. Cancer v.77 no.7 Phase Ⅱ trial of dexverapamil and epirubicin in patients with non-responsive metastatic breast cancer Lehnert,M.;Mross,K.;Schueller,J.;Thuerlimann,B.;Kroeger,N.;Kupper,H. https://doi.org/10.1038/bjc.1998.192
  26. Journal of the National Cancer Institute v.84 no.21 Effects of verapamail on the acute toxicity of doxorubicin in vivo Sridhar,R.;Dwivedi,C.;Anderson,J.;Baker,P.B.;Sharma,H.M.;Desai,P.;Engineer,F.N. https://doi.org/10.1093/jnci/84.21.1653
  27. Biochemical Pharmacology v.38 no.11 Modulation by verapamil of vincristine pharmacokinetics and toxicity in mice bearing human tumor xenografts Horton,J.K.;Thimmaiah,K.N.;Houghton,J.A.;Horowitz,M.E.;Houghton,P.J. https://doi.org/10.1016/0006-2952(89)90405-X
  28. J. Chromato. B. v.709 Assay of paclitaxel (Taxol) in plasma and urine by high performance liquid chromatogrphy Manrin,N.;Catalin,J.;Blachon,M.F.;Durand,A. https://doi.org/10.1016/S0378-4347(98)00060-7
  29. Yakugaku. Zasshi v.114 Determination of new anticancer drug, paclitaxel, in biological fluids by high performance liquid chromatography Mase,H.;Hiraoka,M.;Suzuki,F. https://doi.org/10.1248/yakushi1947.114.5_351
  30. Computer Program in Biomedicine v.16 LAGRAN program for area and monents in pharmacokinetic analysis Rocci,M.L.;Jusko,W.J. https://doi.org/10.1016/0010-468X(83)90082-X