References
- Abramovitch, R. B., Kim, Y. J., Chen, S., Dickman, M. B. and Martin, G. B. 2003. Pseudomonas type III effector AvrP to B induces plant disease susceptibility by inhibiton of host programmed cell death. EMBO J. 22:60-69 https://doi.org/10.1093/emboj/cdg006
- Baker, B., Zambryski, P., Staskawicz, B. and Dinesh-Kumar, S. P. 1997. Signaling in plant-microbe interactions. Science 276: 726-733 https://doi.org/10.1126/science.276.5313.726
- Bogdanove, A. J. 2002. Pto update: recent progress on an ancient plant defence response signaling pathway. Mol. Plant Pathol. 3:283-288 https://doi.org/10.1046/j.1364-3703.2002.00117.x
- Bogdanove, A. J. and Martin, G. B. 2000. AvrPto dependent Ptointeracting proteins and AvrPto-interacting proteins in tomato. Proc. Natl. Acad. Sci. USA 97:8836-8840 https://doi.org/10.1073/pnas.97.16.8836
- Cao, Z., Henzel, W. J. and Gao, X. 1996. IRAK: a kinase associated with the interleukin-I receptor. Science 271: 1128-1131 https://doi.org/10.1126/science.271.5252.1128
- Chang, J. H., Rathjen, J. P, Bernal, A. J., Staskawicz, B. J. and Michelmore, R. W. 2000. Avr Pto enhances growth and necrosis caused by Pseudomonas syringae pv. tomato in tomato lines lacking either Pta or Ptf. Mol. Plant-Microbe Interact. 13:568-571 https://doi.org/10.1094/MPMI.2000.13.5.568
- Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P. and Kessig, D. F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663-676 https://doi.org/10.1105/tpc.12.5.663
- Cutt, J. R. and Klessig, D. F. 1992. Pathogenesis-related proteins. In Genes involved in plant defense (ed. T. Boller, and F. N. Y. Meins), pp. 209-243. Berlin:Springer
- Dangl, J. L. and Jones, J. D. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833 https://doi.org/10.1038/35081161
- Frederick, R. D., Thilmony, R. L., Sessa, G. and Martin, G. B. 1998. Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto kinase. Mol. Cell 2:241-245 https://doi.org/10.1016/S1097-2765(00)80134-3
- Galan, J. E. and Collmer, A. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322-1328 https://doi.org/10.1126/science.284.5418.1322
- Goodman, R. N. and Novacky, A J. (eds) 1994. The bacteria induced hypersensitive reaction. In The hypersensitive reaction in plants to pathogens: a resistance phenomenon, pp. 117-198. St Paul, MN: American Phytopathology Press
- Gu, Y. Q., Wildermuth, M. C., Chakravarthy, S., Loh, Y. T. and Yang, C. et al. 2002. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:81 7-831 https://doi.org/10.1105/tpc.140120
- Gu, Y. Q., Yang, C., Thara, V. K., Zhou, J. and Martin, G. B. 2000. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771-785 https://doi.org/10.1105/tpc.12.5.771
- Jackson, R.W., Mansfield, J. W., Ammouneh, H., Dutton, L. C. and Wharton, B.,et al.2002. Location and activity of members of a family of virPphA homologues in pathovars of Pseudomonas syringae and P. savastanoi. Mol. Plant Pathol. 3:205-16 https://doi.org/10.1046/j.1364-3703.2002.00121.x
- Jia, Y., Loh, Y.-T., Zhou, J. and Martin, G. B. 1997. Allele of Pto and Fen occur in bacterial speck-suspectible and fenthioninsensitive tomato and encode active protein kinases. Plant Cell 9:61-73 https://doi.org/10.1105/tpc.9.1.61
- Keen, N. K., Bent, A. F. and Staskawicz, B. J. 1993. Plant disease resistance genes: interactions with pathogens and their immproved utilization to control plant diseases. In Biotechnology in plant disease control (ed. 1. Chet), pp. 65-88. New York: Wiley-Liss
- Kim, Y. J., Lin, N. C. and Martin, G. B. 2002. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589-598 https://doi.org/10.1016/S0092-8674(02)00743-2
- Lamb, C. J., Lawton, M. A, Dron, M. and Dixon, R. A. 1989. Signal and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56:215-224 https://doi.org/10.1016/0092-8674(89)90894-5
- Lamb, C. J. 1994. Plant disease resistance genes in signal perception and transduction. Cell 76:419-422 https://doi.org/10.1016/0092-8674(94)90106-6
- Laterrot, H. 1985. Susceptibility of the (Pta) plants to Lebaycid insecticide: a tool for breeders? Tomato Genet. Coop. Rep. 35:6-8
-
Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. 1994.
$H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593 https://doi.org/10.1016/0092-8674(94)90544-4 - Loh, Y.-T. and Martin, G. B. 1995. The Pta bacterial resistance gene and the Fen insecticide sensitivity gene encode functional protein kinases with serine/threonine specificity. Plant Physiol. 108: 1735-1739 https://doi.org/10.1104/pp.108.4.1735
- Loh, Y. T., Zhou, J. and Martin, G. B. 1998. The myristylation motif of Pto is not required for disease resistance. Mol. Plant Microbe Interact. 11 :572-576 https://doi.org/10.1094/MPMI.1998.11.6.572
- McDowell, J. M., Dhandaydham, M., Long, T. A., Aarts, M. G. and Goff, S. et al. 1998. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861-74 https://doi.org/10.1105/tpc.10.11.1861
- Mackey, D., Holt, B. F., Wiig, A. and Dangl, J. L. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPMI-mediated resistance in Arabidopsis. Cell 108:743-754 https://doi.org/10.1016/S0092-8674(02)00661-X
- Martin, G. B., Bogdanove, A. J. and Sessa, G. 2003. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant BioI. 54:23-61 https://doi.org/10.1146/annurev.arplant.54.031902.135035
- Martin, G. B., Brommonschenkel, S. H., Chunwongse, J., Frary, A. and Ganal, M. W. et al. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432-1436 https://doi.org/10.1126/science.7902614
- Martin, G. B., Frary, A., Wu, T, Brommonschenkel, S. and Chunwongse, J. et al. 1994. A member of the Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6: 1543-1552 https://doi.org/10.1105/tpc.6.11.1543
- Mehdy, M. C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol. 88:936-942 https://doi.org/10.1104/pp.88.3.936
- Meyers, B. C., Kozik, A., Griego, A., Kuang, H. and Michelmore, R. W. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809-834 https://doi.org/10.1105/tpc.009308
- Mysore, K. S., Crasta, O. R., Tuori, R. P., Folkerts, O., Swirsky, P. B. and Martin, G. B. 2002. Comprehensive transcript profiling of Pto- and Pif-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J. 32:299-315 https://doi.org/10.1046/j.1365-313X.2002.01424.x
- Rathjen, J. P., Chang, J. H., Staskawicz, B. J. and Michelmore, R. W. 1999. Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of Avr Pto. EMBO J. 18:3232-3240 https://doi.org/10.1093/emboj/18.12.3232
- Rommens, C. M. T., Salmeron, J. M., Oldroyd, G. E. D. and Staskawicz, B. J. 1995. Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7: 1537-1544 https://doi.org/10.1105/tpc.7.10.1537
- Ronald, P. C., Salmeron, J. M., Carland, F. M. and Staskawicz, B. J. 1992. The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. J. Bacteriol. 174:1604-1611
- Salmeron, J. M., Oldroyd, G. E. D., Rommens, C. M. T, Scofield, S. R. and Kim, H.-S. et al. 1996. Tomato Pifis a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123-133 https://doi.org/10.1016/S0092-8674(00)80083-5
- Salmeron, J. M. and Staskawicz, B. J. 1993. Molecular characterization and hrp dependence of the avirulence gene avrPto from Pseudomonas syringae pv. tomato. Mol. Gen. Genet. 239:6-16
- Scofield, S. R., Tobias, C. M., Rathjen, J. P., Chang, J. H. and Lavelle, D. T.,et al.1996. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274: 2063-2065 https://doi.org/10.1126/science.274.5295.2063
- Sessa, G., D'Ascenzo, M., Loh, Y .T .and Martin, G. B. 1998. Biochemical properties of two protein kinases involved in disease resistance signaling in tomato. J. BioI. Chem. 273:15860-15865 https://doi.org/10.1074/jbc.273.25.15860
- Sessa, G., D'Ascenzo, M. and Martin, G. B. 2000. Thr38 and Ser198 are Pto autophosphorylation sites required for the AvrPto-Pto-mediated hypersensitive response. EMBO J. 19: 2257-2269 https://doi.org/10.1093/emboj/19.10.2257
- Shan, L., Thara, V. K., Martin, G. B., Zhou, J. M. and Tang, X. 2000a. The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane. Plant Cell 12:2323-2338 https://doi.org/10.1105/tpc.12.12.2323
- Shan, L., He, P., Zhou, J. M. and Tang, X. 2000b. A cluster of mutations disrupt the avirulence but not the virulence function of AvrPto. Mol. Plant-Microbe Interact. 13:592-598 https://doi.org/10.1094/MPMI.2000.13.6.592
- Song, W.-Y 1995. A receptor kinase-like protein encoded by the rice disease resistance gene Xa-21. Science 270: 1804-1806 https://doi.org/10.1126/science.270.5243.1804
- Staskawicz, B. J., Ausbel, F. M., Baker, B. J., Ellis, J. G. and Jones, J. D. G. 1995. Molecular genetics of plant disease resistance. Science 268:661-667 https://doi.org/10.1126/science.7732374
- Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y. and Martin, G. B. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274: 2060-2063 https://doi.org/10.1126/science.274.5295.2060
- Tang, X., Xie, M., Kim, Y J., Zhou, J., Klessig, D. F. and Martin, G. B. 1999. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11:15-29 https://doi.org/10.1105/tpc.11.1.15
- Thara, V. K., Tang, X., Gu, Y. Q., Martin, G. B. and Zhou, J. M. 1999. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate andjasmonate. Plant J. 20:475-483 https://doi.org/10.1046/j.1365-313x.1999.00619.x
- Thilmony, R. T., Chen, Z., Bressan, R. A. and Martin, G. B. 1995. Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv. tabaci expressing avrPto. Plant Cell 7: 1529-1536
- Van der Biezen, E. A. and Jones, J. D. G. 1998. Plant diseaseresistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23:454-456 https://doi.org/10.1016/S0968-0004(98)01311-5
- Van der Vossen, E. A., van der Voort, J. N., Kanyuka, K., Bendahmane, A. and Sandbrink, H. et al. 2000. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J. 23:567-576 https://doi.org/10.1046/j.1365-313x.2000.00814.x
- Vos, P., Simons, G., Jesse, T., Wijbrandi, J. and Heinen, L.,et al.1998. The tomato Mi-1 gene confers resistance to both rootknot nematodes and potato aphids. Nat. Biotechnol. 16: 1365-1369 https://doi.org/10.1038/4350
- Zhang, S. and Klessig, D. F. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci. 6:520-527 https://doi.org/10.1016/S1360-1385(01)02103-3
- Zhou, J.-M., Tang, X. and Martin, G. B. 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesisrelated genes. EMBO J. 16:3207-3218 https://doi.org/10.1093/emboj/16.11.3207
- Zhou, J.-M., Loh, Y-T., Bressan, R. A. and Martin, G. B. 1995. The tomato gene Ptil encodes a serine-threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83:925-935 https://doi.org/10.1016/0092-8674(95)90208-2
Cited by
- Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco vol.41, pp.3, 2014, https://doi.org/10.1007/s11033-013-3001-9
- Identification and functional expression of the pepper pathogen-induced gene, CAPIP2, involved in disease resistance and drought and salt stress tolerance vol.62, pp.1-2, 2006, https://doi.org/10.1007/s11103-006-9010-5
- Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance vol.63, pp.4, 2007, https://doi.org/10.1007/s11103-006-9110-2
- RAV genes: regulation of floral induction and beyond vol.114, pp.7, 2014, https://doi.org/10.1093/aob/mcu069
- Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage vol.6, pp.1, 2012, https://doi.org/10.1007/s11816-011-0193-0
- CASAR82A, a Pathogen-induced Pepper SAR8.2, Exhibits an Antifungal Activity and its Overexpression Enhances Disease Resistance and Stress Tolerance vol.61, pp.1-2, 2006, https://doi.org/10.1007/s11103-005-6102-6
- Functional analysis of the promoter of the pepper pathogen-induced gene, CAPIP2, during bacterial infection and abiotic stresses vol.172, pp.2, 2007, https://doi.org/10.1016/j.plantsci.2006.08.015
- Identification and deletion analysis of the promoter of the pepper SAR8.2 gene activated by bacterial infection and abiotic stresses vol.224, pp.2, 2006, https://doi.org/10.1007/s00425-005-0210-z
- Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance vol.61, pp.6, 2006, https://doi.org/10.1007/s11103-006-0057-0
- Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses vol.224, pp.5, 2006, https://doi.org/10.1007/s00425-006-0302-4
- Overexpression of theMalus hupehensisMhTGA2Gene, a Novel bZIP Transcription Factor for Increased Tolerance to Salt and Osmotic Stress in Transgenic Tobacco vol.173, pp.5, 2012, https://doi.org/10.1086/665262
- Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses vol.227, pp.2, 2007, https://doi.org/10.1007/s00425-007-0628-6
- Functional roles of the pepper antimicrobial protein gene, CaAMP1, in abscisic acid signaling, and salt and drought tolerance in Arabidopsis vol.229, pp.2, 2009, https://doi.org/10.1007/s00425-008-0837-7
- Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide vol.18, pp.3, 2013, https://doi.org/10.1007/s12257-013-0392-3