DOI QR코드

DOI QR Code

Molecular Mechanisms Involved in Bacterial Speck Disease Resistance of Tomato

  • Kim, Young-Jin (Graduate School of Biotechnology, Korea University) ;
  • Gregory B. Martin (Boyce Thompson Institute for Plant Research, Department of Plant Pathology, Cornell University)
  • Published : 2004.03.01

Abstract

An important recent advance in the field of plant-microbe interactions has been the cloning of genes that confer resistance to specific viruses, bacteria, fungi or insects. Disease resistance (R) genes encode proteins with predicted structural motifs consistent with them having roles in signal recognition and transduction. Plant disease resistance is the result of an innate host defense mechanism, which relies on the ability of plant to recognize pathogen invasion and efficiently mount defense responses. In tomato, resistance to the pathogen Pseudomonas syringae pv. tomato is mediated by the specific recognition between the tomato serine/threonine kinase Pto and bacterial protein AvrPto or AvrPtoB. This recognition event initiates signaling events that lead to defense responses including an oxidative burst, the hypersensitive response (HR), and expression of pathogenesis- related genes.

Keywords

References

  1. Abramovitch, R. B., Kim, Y. J., Chen, S., Dickman, M. B. and Martin, G. B. 2003. Pseudomonas type III effector AvrP to B induces plant disease susceptibility by inhibiton of host programmed cell death. EMBO J. 22:60-69 https://doi.org/10.1093/emboj/cdg006
  2. Baker, B., Zambryski, P., Staskawicz, B. and Dinesh-Kumar, S. P. 1997. Signaling in plant-microbe interactions. Science 276: 726-733 https://doi.org/10.1126/science.276.5313.726
  3. Bogdanove, A. J. 2002. Pto update: recent progress on an ancient plant defence response signaling pathway. Mol. Plant Pathol. 3:283-288 https://doi.org/10.1046/j.1364-3703.2002.00117.x
  4. Bogdanove, A. J. and Martin, G. B. 2000. AvrPto dependent Ptointeracting proteins and AvrPto-interacting proteins in tomato. Proc. Natl. Acad. Sci. USA 97:8836-8840 https://doi.org/10.1073/pnas.97.16.8836
  5. Cao, Z., Henzel, W. J. and Gao, X. 1996. IRAK: a kinase associated with the interleukin-I receptor. Science 271: 1128-1131 https://doi.org/10.1126/science.271.5252.1128
  6. Chang, J. H., Rathjen, J. P, Bernal, A. J., Staskawicz, B. J. and Michelmore, R. W. 2000. Avr Pto enhances growth and necrosis caused by Pseudomonas syringae pv. tomato in tomato lines lacking either Pta or Ptf. Mol. Plant-Microbe Interact. 13:568-571 https://doi.org/10.1094/MPMI.2000.13.5.568
  7. Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P. and Kessig, D. F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663-676 https://doi.org/10.1105/tpc.12.5.663
  8. Cutt, J. R. and Klessig, D. F. 1992. Pathogenesis-related proteins. In Genes involved in plant defense (ed. T. Boller, and F. N. Y. Meins), pp. 209-243. Berlin:Springer
  9. Dangl, J. L. and Jones, J. D. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833 https://doi.org/10.1038/35081161
  10. Frederick, R. D., Thilmony, R. L., Sessa, G. and Martin, G. B. 1998. Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto kinase. Mol. Cell 2:241-245 https://doi.org/10.1016/S1097-2765(00)80134-3
  11. Galan, J. E. and Collmer, A. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322-1328 https://doi.org/10.1126/science.284.5418.1322
  12. Goodman, R. N. and Novacky, A J. (eds) 1994. The bacteria induced hypersensitive reaction. In The hypersensitive reaction in plants to pathogens: a resistance phenomenon, pp. 117-198. St Paul, MN: American Phytopathology Press
  13. Gu, Y. Q., Wildermuth, M. C., Chakravarthy, S., Loh, Y. T. and Yang, C. et al. 2002. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:81 7-831 https://doi.org/10.1105/tpc.140120
  14. Gu, Y. Q., Yang, C., Thara, V. K., Zhou, J. and Martin, G. B. 2000. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771-785 https://doi.org/10.1105/tpc.12.5.771
  15. Jackson, R.W., Mansfield, J. W., Ammouneh, H., Dutton, L. C. and Wharton, B.,et al.2002. Location and activity of members of a family of virPphA homologues in pathovars of Pseudomonas syringae and P. savastanoi. Mol. Plant Pathol. 3:205-16 https://doi.org/10.1046/j.1364-3703.2002.00121.x
  16. Jia, Y., Loh, Y.-T., Zhou, J. and Martin, G. B. 1997. Allele of Pto and Fen occur in bacterial speck-suspectible and fenthioninsensitive tomato and encode active protein kinases. Plant Cell 9:61-73 https://doi.org/10.1105/tpc.9.1.61
  17. Keen, N. K., Bent, A. F. and Staskawicz, B. J. 1993. Plant disease resistance genes: interactions with pathogens and their immproved utilization to control plant diseases. In Biotechnology in plant disease control (ed. 1. Chet), pp. 65-88. New York: Wiley-Liss
  18. Kim, Y. J., Lin, N. C. and Martin, G. B. 2002. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589-598 https://doi.org/10.1016/S0092-8674(02)00743-2
  19. Lamb, C. J., Lawton, M. A, Dron, M. and Dixon, R. A. 1989. Signal and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56:215-224 https://doi.org/10.1016/0092-8674(89)90894-5
  20. Lamb, C. J. 1994. Plant disease resistance genes in signal perception and transduction. Cell 76:419-422 https://doi.org/10.1016/0092-8674(94)90106-6
  21. Laterrot, H. 1985. Susceptibility of the (Pta) plants to Lebaycid insecticide: a tool for breeders? Tomato Genet. Coop. Rep. 35:6-8
  22. Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. 1994. $H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593 https://doi.org/10.1016/0092-8674(94)90544-4
  23. Loh, Y.-T. and Martin, G. B. 1995. The Pta bacterial resistance gene and the Fen insecticide sensitivity gene encode functional protein kinases with serine/threonine specificity. Plant Physiol. 108: 1735-1739 https://doi.org/10.1104/pp.108.4.1735
  24. Loh, Y. T., Zhou, J. and Martin, G. B. 1998. The myristylation motif of Pto is not required for disease resistance. Mol. Plant Microbe Interact. 11 :572-576 https://doi.org/10.1094/MPMI.1998.11.6.572
  25. McDowell, J. M., Dhandaydham, M., Long, T. A., Aarts, M. G. and Goff, S. et al. 1998. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861-74 https://doi.org/10.1105/tpc.10.11.1861
  26. Mackey, D., Holt, B. F., Wiig, A. and Dangl, J. L. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPMI-mediated resistance in Arabidopsis. Cell 108:743-754 https://doi.org/10.1016/S0092-8674(02)00661-X
  27. Martin, G. B., Bogdanove, A. J. and Sessa, G. 2003. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant BioI. 54:23-61 https://doi.org/10.1146/annurev.arplant.54.031902.135035
  28. Martin, G. B., Brommonschenkel, S. H., Chunwongse, J., Frary, A. and Ganal, M. W. et al. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432-1436 https://doi.org/10.1126/science.7902614
  29. Martin, G. B., Frary, A., Wu, T, Brommonschenkel, S. and Chunwongse, J. et al. 1994. A member of the Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6: 1543-1552 https://doi.org/10.1105/tpc.6.11.1543
  30. Mehdy, M. C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol. 88:936-942 https://doi.org/10.1104/pp.88.3.936
  31. Meyers, B. C., Kozik, A., Griego, A., Kuang, H. and Michelmore, R. W. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809-834 https://doi.org/10.1105/tpc.009308
  32. Mysore, K. S., Crasta, O. R., Tuori, R. P., Folkerts, O., Swirsky, P. B. and Martin, G. B. 2002. Comprehensive transcript profiling of Pto- and Pif-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J. 32:299-315 https://doi.org/10.1046/j.1365-313X.2002.01424.x
  33. Rathjen, J. P., Chang, J. H., Staskawicz, B. J. and Michelmore, R. W. 1999. Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of Avr Pto. EMBO J. 18:3232-3240 https://doi.org/10.1093/emboj/18.12.3232
  34. Rommens, C. M. T., Salmeron, J. M., Oldroyd, G. E. D. and Staskawicz, B. J. 1995. Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7: 1537-1544 https://doi.org/10.1105/tpc.7.10.1537
  35. Ronald, P. C., Salmeron, J. M., Carland, F. M. and Staskawicz, B. J. 1992. The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. J. Bacteriol. 174:1604-1611
  36. Salmeron, J. M., Oldroyd, G. E. D., Rommens, C. M. T, Scofield, S. R. and Kim, H.-S. et al. 1996. Tomato Pifis a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123-133 https://doi.org/10.1016/S0092-8674(00)80083-5
  37. Salmeron, J. M. and Staskawicz, B. J. 1993. Molecular characterization and hrp dependence of the avirulence gene avrPto from Pseudomonas syringae pv. tomato. Mol. Gen. Genet. 239:6-16
  38. Scofield, S. R., Tobias, C. M., Rathjen, J. P., Chang, J. H. and Lavelle, D. T.,et al.1996. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274: 2063-2065 https://doi.org/10.1126/science.274.5295.2063
  39. Sessa, G., D'Ascenzo, M., Loh, Y .T .and Martin, G. B. 1998. Biochemical properties of two protein kinases involved in disease resistance signaling in tomato. J. BioI. Chem. 273:15860-15865 https://doi.org/10.1074/jbc.273.25.15860
  40. Sessa, G., D'Ascenzo, M. and Martin, G. B. 2000. Thr38 and Ser198 are Pto autophosphorylation sites required for the AvrPto-Pto-mediated hypersensitive response. EMBO J. 19: 2257-2269 https://doi.org/10.1093/emboj/19.10.2257
  41. Shan, L., Thara, V. K., Martin, G. B., Zhou, J. M. and Tang, X. 2000a. The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane. Plant Cell 12:2323-2338 https://doi.org/10.1105/tpc.12.12.2323
  42. Shan, L., He, P., Zhou, J. M. and Tang, X. 2000b. A cluster of mutations disrupt the avirulence but not the virulence function of AvrPto. Mol. Plant-Microbe Interact. 13:592-598 https://doi.org/10.1094/MPMI.2000.13.6.592
  43. Song, W.-Y 1995. A receptor kinase-like protein encoded by the rice disease resistance gene Xa-21. Science 270: 1804-1806 https://doi.org/10.1126/science.270.5243.1804
  44. Staskawicz, B. J., Ausbel, F. M., Baker, B. J., Ellis, J. G. and Jones, J. D. G. 1995. Molecular genetics of plant disease resistance. Science 268:661-667 https://doi.org/10.1126/science.7732374
  45. Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y. and Martin, G. B. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274: 2060-2063 https://doi.org/10.1126/science.274.5295.2060
  46. Tang, X., Xie, M., Kim, Y J., Zhou, J., Klessig, D. F. and Martin, G. B. 1999. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11:15-29 https://doi.org/10.1105/tpc.11.1.15
  47. Thara, V. K., Tang, X., Gu, Y. Q., Martin, G. B. and Zhou, J. M. 1999. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate andjasmonate. Plant J. 20:475-483 https://doi.org/10.1046/j.1365-313x.1999.00619.x
  48. Thilmony, R. T., Chen, Z., Bressan, R. A. and Martin, G. B. 1995. Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv. tabaci expressing avrPto. Plant Cell 7: 1529-1536
  49. Van der Biezen, E. A. and Jones, J. D. G. 1998. Plant diseaseresistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23:454-456 https://doi.org/10.1016/S0968-0004(98)01311-5
  50. Van der Vossen, E. A., van der Voort, J. N., Kanyuka, K., Bendahmane, A. and Sandbrink, H. et al. 2000. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J. 23:567-576 https://doi.org/10.1046/j.1365-313x.2000.00814.x
  51. Vos, P., Simons, G., Jesse, T., Wijbrandi, J. and Heinen, L.,et al.1998. The tomato Mi-1 gene confers resistance to both rootknot nematodes and potato aphids. Nat. Biotechnol. 16: 1365-1369 https://doi.org/10.1038/4350
  52. Zhang, S. and Klessig, D. F. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci. 6:520-527 https://doi.org/10.1016/S1360-1385(01)02103-3
  53. Zhou, J.-M., Tang, X. and Martin, G. B. 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesisrelated genes. EMBO J. 16:3207-3218 https://doi.org/10.1093/emboj/16.11.3207
  54. Zhou, J.-M., Loh, Y-T., Bressan, R. A. and Martin, G. B. 1995. The tomato gene Ptil encodes a serine-threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83:925-935 https://doi.org/10.1016/0092-8674(95)90208-2

Cited by

  1. Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco vol.41, pp.3, 2014, https://doi.org/10.1007/s11033-013-3001-9
  2. Identification and functional expression of the pepper pathogen-induced gene, CAPIP2, involved in disease resistance and drought and salt stress tolerance vol.62, pp.1-2, 2006, https://doi.org/10.1007/s11103-006-9010-5
  3. Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance vol.63, pp.4, 2007, https://doi.org/10.1007/s11103-006-9110-2
  4. RAV genes: regulation of floral induction and beyond vol.114, pp.7, 2014, https://doi.org/10.1093/aob/mcu069
  5. Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage vol.6, pp.1, 2012, https://doi.org/10.1007/s11816-011-0193-0
  6. CASAR82A, a Pathogen-induced Pepper SAR8.2, Exhibits an Antifungal Activity and its Overexpression Enhances Disease Resistance and Stress Tolerance vol.61, pp.1-2, 2006, https://doi.org/10.1007/s11103-005-6102-6
  7. Functional analysis of the promoter of the pepper pathogen-induced gene, CAPIP2, during bacterial infection and abiotic stresses vol.172, pp.2, 2007, https://doi.org/10.1016/j.plantsci.2006.08.015
  8. Identification and deletion analysis of the promoter of the pepper SAR8.2 gene activated by bacterial infection and abiotic stresses vol.224, pp.2, 2006, https://doi.org/10.1007/s00425-005-0210-z
  9. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance vol.61, pp.6, 2006, https://doi.org/10.1007/s11103-006-0057-0
  10. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses vol.224, pp.5, 2006, https://doi.org/10.1007/s00425-006-0302-4
  11. Overexpression of theMalus hupehensisMhTGA2Gene, a Novel bZIP Transcription Factor for Increased Tolerance to Salt and Osmotic Stress in Transgenic Tobacco vol.173, pp.5, 2012, https://doi.org/10.1086/665262
  12. Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses vol.227, pp.2, 2007, https://doi.org/10.1007/s00425-007-0628-6
  13. Functional roles of the pepper antimicrobial protein gene, CaAMP1, in abscisic acid signaling, and salt and drought tolerance in Arabidopsis vol.229, pp.2, 2009, https://doi.org/10.1007/s00425-008-0837-7
  14. Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide vol.18, pp.3, 2013, https://doi.org/10.1007/s12257-013-0392-3