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ABSTRACT:

Using the solution to the contour integral of the complex logarithmic function 315 Cln(z—zo)dz , the following definite

integral, derived from the formula to calculate the forces exerted to a circular cylinder by the discrete vortices shed from it, has been

1
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evaluated f [ arcsin e sin @ do = { 2
0 Vita®—2a cos a — when |al >1
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1. Introduction Sgcln(z—ZO)dz )

When there is a relative motion between a solid body and
water, vortex shedding from the body always occurs. The
lift and drag, resulting from this shedding of the vortex are
common, but extremely important, effects observed on
offshore structures. If the vortex shedding is simulated by
the discrete vortex method, these forces can be conveniently
calculated from Sarpkaya's formula (Sarpkaya, 1963). This
force formula demands some mathematical insight and
judgment, and as such, has attracted further research interest
(Lee, 1990).

The discrete vortex method is a substitute for the actual
viscous rotational flow by the inviscid flow with imbedded
vortices. Due to the cylinder boundary condition, these
outside vortices have their images within the cylinder. Thus,
vortices exist not only in the actual flow field, but also
inside the cylinder. In this theoretical model, the solid
cylinder is replaced by the fluid, endowing its boundary
with a special meaning of zero normal velocity. Under this
situation, the force formula can be derived with the help of
the extended Blasius theorem (Milne-Thomson, 1960).

While using the Milne-Thomson’s extension of the Blasius
theorem to calculate forces exerted on a circular cylinder
that is placed in a flow of ideal fluid with imbedded
vortices, it becomes necessary to undertake the integration of
a complex logarithm around the unit circle C:
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z representing the position of a vortex. In dealing with

this integral of a complex logarithmic function, two nonzero
real integrals are present:

foﬁ[ln\/ 1+a?—2a cos a]cos a da

and

1= ”[arcsin sin ¢
fU Vi+a2—2a cos @

sin a da 2

The first of these integrals is known and can be found in
integral tables, but the second one has not yet been
investigated. In the present study, using the result of
integral (1), this second integral was evaluated, for some
given real number a »# 1 and for the values of arcsin
interpreted in equation (3), as detailed below.

2. Integration

Let z=¢  and z2,=ae .

f be those denoted in Figures 1-4. Then we have

with a=§— 4, and let r and

. re 0T84
Z2— 2= rez'(€(,+7r~ﬁ):a>l B

¥ sin A= sin «,

and r’=1+a%-2a cos a
which implies that
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8 S T 2224 cos @ )
where je (_7[7’[7[) . lal <1

(—7,7) lal> 1

for any as(—r, n)

When |a|>1, the contour integral (1) obviously vanishes,
since there is no singular point within C. To evaluate the

integral when |4|<1, take a branch cut at 0= 6;+ 7. Now,

écln(z—zo)dz @)

i 1 i g=0,+
=[(e?—zmn(e?—zy)—(e®—2,)] 5=90_7;

=[(e?—z)(In HO)+ (B(O)+ 8 y+2kn)

i6 =8,+nr
—(e"—2zy]

=0 ,—x

=—27(1+ a)ie ™

because In(re?)=In »+ {0+ 2kx) where k is an arbitrary
integer and, by examination of Fig. 1 and Fig 2,

HO,+m=nr0y—n)

and A0yt m=—p0,—D=x
Also, for g<1

56 In(z—2zy)dz
C

= fj [In 7+ i(B+ 0 y+2kn))ie "e “da (5a)
=ei€°fi G[(In #) cos a— B sin «]
—[(Iln ») sin e+ cos al)da,
and for g>1
36 In(z—zy)dz
c
= f_x [In 74 &8 +r— f+2km)]ie Bog gy (5b)

=ei0°fi ([ (In #) cos a+ @ sin a]

—[(In #) sin a— @ cos a])da.

Examining each term of these integrals individually, we

find that, since (@) is an even function of q,

f_” (In ») cos ada
=2f0”(1n ¥) cos a da

= fonln(1+a2—2a cos a) cos a da

___{—an’ Hal<1
—zla :lal>1

after use has been made of the result 4.397(6) of Gradshteyn
et al(Gradshteyn, et al., 1994). Also, making use of the odd
nature of the function g with respect to &, we find

f”Bsin ada=2fﬂ,8 sin « da
-7 0
=21

where | was defined previously in equation (2). Similarly,
due to the odd integrands

f_” (In #) sina de=0,

and f:[ B cos a da=0.

So, returning to equation (5) and equating it when |al(1
to equation (4), and when la|>1 to zero, we arrive at the
results

—de(ar+2D)=—2mi(1+ @)e™ : |al<1

—z'ei9°(—g+21)=0 ta<—1
~ie"(Z-2D=0 a1
giving
7r+_%a71' s lal <1
I= x
_ZH N |d|>l
That is
" . sin_a .
fo [ arcsin V152?24 co a] sin a da
{n—l——%n’a : lal <1
_ZI% : lal >1
3. Further Discussion
It is to be noted that the proposed integral is

discontinuous at g=1, which is a rather unfortunate, but
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inevitable, aspect of the problem, as
that

integrand(ie, £ in the

the integral is
reason is that the
itself, is
discontinuous at g=1, which can be recognized with help
of the Fig. 14.

In the present integration, the branch cut was located at

indeterminate point. The

present  notation),

a=nr as explicitly specified in the equation (3) and shown
in the Fig. 1-4. Based on these figures, the range of A is
dependent upon that of g which, in turn, makes the
integral dependent upon the employed branch cut. More
specifically, the integral has different values from the
present one if the branch cut was chosen at ¢=2# This,
again, is an unfortunate aspect of the problem, but such is
the nature of an integral of any multivalued function.
However, the branch cut, employed in the present study, is
the preferred choice for most users.
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Fig. 1 Notations when 0 < a < 1

Fig. 2 Notatiors when —1 < a < 0

Fig. 3 Notations when a <— 1

Fig. 4 Notations when a > 1
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