Correlations and Seasonal Variations of Marine Viral Abundances, Bacterial Abundances and Concentration of Chlorophyll-$\alpha$ in Gwangyang Bay

광양만내 해양 바이러스에 대한 엽록소$\alpha$와 박테리아 개체량의 계절적 변이와 상관관계

  • 최은석 (한국해양연구원 남해연구소) ;
  • 김소정 (한국해양연구원 남해연구소) ;
  • 오로라 (한국해양연구원 남해연구소) ;
  • 윤희영 (한국해양연구원 남해연구소) ;
  • 신경순 (한국해양연구원 남해연구소) ;
  • 장만 (한국해양연구원 남해연구소) ;
  • 이석찬 (성균관대학교 생명공학부 유전공학과) ;
  • 이상섭 (경기대학교 생명과학과) ;
  • 이택견 (한국해양연구원 남해연구소)
  • Published : 2004.03.01

Abstract

The marine viral density in the Gwangyang Bay was abundant about 2.0${\times}$10$^{8}$ particles ml$^{-1}$ . For each season, viral abundances were recorded from 9.0${\times}$10$^{8}$ particles ml$^{-1}$ in summer to 0.7${\times}$10$^{6}$ particles ml$^{-1}$ in winter. The spatial distributions of the viral, bacterial and phytoplankton biomass in the Gwangyang Bay were mostly highey in closed estuarine system (Station 2, 5, 10, 12, 16, 20) than open ocean system (Station 28, 38, 42, 46, 51), And the othey closed estuarine system (Station 22, 26, 32, 34) indicated higher viral abundances, lower bacterial and plankton biomass than open oceanic system. In depths of some stations, the bacterial abundances exceeded a hundred fold than viral abundances. Seasonal abundances of marine viruses and their host systems were dynamically changed, and their seasonal variations were closely correlated. In summer, viral and bacterial abundances were increased, and phytoplankton chlorophyll $\alpha$ concentrations were maintained in average values. In winter, viral and bacterial abundances were dramatically decreased, and chlorophyll a concentrations were decreased, but, immediately increased. The viral abundances were peaked in August 2001, and bacteyial abundance, in August 2001 and June 2002, while chlorophyll a concentrations were peaked in April. 2002. In total host and viral abundances, it was seemed that their pools were maintained to steady-states by viral mortality, and viral abundance maintained steady-states. In our assessments, this report is a unique research about marine viral ecology of the Gwangyang Bay in Korea.

광양만내 평균 해양 바이러스 양은 2.0${\times}$$10^{8}$ particles ml$^{-1}$로 매우 풍부했다. 각 계절별 바이러스의 밀도는 여름에 최대 9.0${\times}$$10^{8}$ particles ml$^{-1}$, 겨울에는 최소인 0.7${\times}$$10^{6}$ particles ml$^{-1}$을 기록했다. 광양만내의 바이러스, 박테리아, 식물플랑크톤 생물량의 공간적 분포는 외만 해역에 해당하는 정점 28, 38, 42, 46, 51에서 보다 내만 해역에 해당하는 정점 2, 5, 10, 12, 16, 20에서 많은 것으로 나타났다. 또한 내만 해역에 해당하는 정점 22, 26, 32, 34는 높은 바이러스 밀도를 보였지만 상대적으로 외만 해역에 비해서 낮은 박테리아와 식물플랑크톤의 생물량을 나타냈다. 몇몇 정점의 수심 깊이에서는 박테리아의 밀도가 바이러스의 밀도를 100배 정도 초과했다. 해양 바이러스와 그들의 숙주 생물의 밀도는 계절에 따라 변화했으며, 그들의 계절별 변화는 서로 밀접한 상호연관성을 가졌다. 여름에 바이러스와 박테리아의 밀도는 증가된 반면 식물플랑크톤의 엽록소 $\alpha$ 농도는 평균값을 유지하였다. 겨울에는 바이러스와 박테리아의 밀도가 급속하게 줄어들었고, 마찬가지로 엽록소 $\alpha$의 농도 역시 감소하다가, 곧 다시 증가했다. 바이러스의 밀도는 2001년 8월에 최고점에 도달했으며, 박테리아의 밀도는 2001년 8월과 2002년 6월에 최고값을 가졌다. 반면에 엽록소 $\alpha$의 농도는 2002년 4월에 최대치에 도달했다. 전체 숙주와 바이러스 밀도로 볼 때, 그들의 먹이사슬은 바이러스에 의한 사멸에 의해서 평형 상태로 유지되고, 바이러스의 밀도 또한 평형 상태를 유지하는 것으로 보였다. 이러한 시도는 우리나라 광양만 내에 존재하는 해양 바이러스의 생태적 분포 연구를 다루는 첫 번째 실험으로 사료된다.

Keywords

References

  1. Microb. Ecol. v.42 Distribution of virus-like particles in an oligotrophic marine envrionment(Alboran Sea, Western Mediterranean) Alonso,M.C.;F.J.Gomez;J.Rodriguez;J.J.Borrego https://doi.org/10.1007/s00248-001-0015-y
  2. Nature v.340 High abundance of viruses found in aquatic environments Bergh,O.;K.Y.Borsheim;G.Bratbak;M.Heidal https://doi.org/10.1038/340467a0
  3. Mar. Ecol. Prog. Ser. v.97 Viruses, bacterioplankton, and phytoplankton in the southeastern Gulf of Mexico: distribution and contribution to oceanic DNA pools Boehme,J.;M.E.Frischer;S.C.Jiang;C.A.Kellogg;S.Pichard;J.B.Rose;C.Steinway;J.H.Paul https://doi.org/10.3354/meps097001
  4. Mar. Ecol. Prog. Ser. v.93 Viral mortality of the marine alga Emiliana huxleyi (Haptophyceae) and termination of algal blooms Bratbak,G.;J.K.Egge;M.Heldal https://doi.org/10.3354/meps093039
  5. Appl. Environ. Microbiol. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR Gold Chen,F.;J.R.Lu;B.J.Binder;Y.C.Liu;R.E.Hodson
  6. Mar. Ecol. Prog. Ser. v.78 Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments Cochlan,W.P.;J.Wikner;G.F.Steward;D.S.Smith;F.Azam https://doi.org/10.3354/meps078001
  7. Appl. Envrion. Microbiol. v.64 Seasonal abundance of lysogenic bacteria in a subtropical estuary Cochran,P.K.;J.H.Paul
  8. Limnol. Oceanogr. v.40 no.4 Dynamics of a lytic infecting the photosynthetic marine picoflagellate Micromonas pusilla Cottrell,M.T.;C.A.Suttle https://doi.org/10.4319/lo.1995.40.4.0730
  9. Aquat. Microb. Ecol. v.16 Vertical profiles of virus-like particles and bacteria in the water column and sediments of Chesapeake Bay, USA Drake,L.A.;K.H.Choi;A.G.E.Haskell;F.C.Dobbs https://doi.org/10.3354/ame016017
  10. Oceanography v.6 no.2 Viruses in marine planktonic systems Fuhrman,J.A.;C.A.Suttle https://doi.org/10.5670/oceanog.1993.14
  11. Nature v.399 Marine viruses and their biogeochemical and ecological effects Fuhrman,J.A. https://doi.org/10.1038/21119
  12. Appl. Environ. Microbiol. v.65 Viral lysis and bacterivory during a phytoplankton bloom in a coastal water microcosm Guixa-Boixereu,N.;K.Lysnes;Pedro's-Alio,C.
  13. Appl. Envrion. Microbiol. v.61 Significance of bacteriophages for controlling bacterioplankton growth in a Mesotrophic lake Hennes,K.P.;M.Simon
  14. Appl. Environ. Microbiol. v.61 Fluorescently labeled virus probes show that natural virus population can control the structure of marine microbial communities Hennes,K.P.;C.A.Suttle;A.M.Chan
  15. Appl. Environ. Microbiol. v.33 Use of nucleopore filters for counting bacteria by fluorescence microscopy Hobbie,J.E.;R.J.Daley;S.Jasper
  16. Mar. Ecol. Prog. Ser. v.121 Viral abundances in aquatic sys-tems: a comparison between marine and fresh waters Maranger,R.;D.F.Bird https://doi.org/10.3354/meps121217
  17. Appl. Envrion. Microbiol. v.61 Seasonal variations of virus abundance and viral control of the bacterial porduction in a backwater system of the Danube River Mathias,C.B.;A.K.T.Kirschner;B.Velimirov
  18. Science v.266 Isolation of virus capable of lysing the brown tide microalga, Aureococcus anophagefferens Milligan,K.L.D.;E.M.Cosper https://doi.org/10.1126/science.266.5186.805
  19. Mar. Ecol. Prog. Ser. v.89 Viral dynamics: a model of the effects of size, shape, motion and abundance of single celled planktonic organisms and other particles Murray,A.G.;G.A.Jackson https://doi.org/10.3354/meps089103
  20. Appl. Environ. Microbiol. v.65 no.3 Growth characteristics of Heterosigma akashiwo virus and its possible use as amicrobiological agent for red tide control Nagasaki,K.;K.Tarutani;M.Yamaguchi
  21. Aquat. Microb. Ecol. v.14 Use of SYBR Green I for rapid epi-fluorescence counts of marine viruses and bacteria Noble,R.T.;J.A.Fuhrman https://doi.org/10.3354/ame014113
  22. Microb. Ecol. v.43 no.2 Lysogeny and lytic viral production during a bloom of the cyano bacterium Synechococcus spp. Ortmann,A.C.;J.E.Lawrence;C.A.Suttle https://doi.org/10.1007/s00248-001-1058-9
  23. A Manual of Chemical and Biological Methods for Seawater Analysis Determination of chlorophylls and total carotenoids: spectrophotometric method Parsons,T.R.;Y.Maita;C.M.Lalli
  24. Antarct. J. US. v.27 Virus and bacteria abundances in the Drake Passage during January and August 1991 Smith,D.C.;G.F.Steward;F.Azam;J.T.Hollibaugh
  25. Microb. Ecol. v.28 The significance of viruses to mortality in aquatic microbial communities Suttle,C.A. https://doi.org/10.1007/BF00166813
  26. Appl. Envrion. Microbiol. v.60 Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Suttle,C.A.;A.M.Chan
  27. Bioscience v.49 Viruses and nutrient cycles in the sea Wilhelm,S.W.;C.A.Suttle https://doi.org/10.2307/1313569
  28. Microbiol. Mol. Biol. Rev. v.64 Virioplankton: viruses in aquatic ecosystems Wommack,K.E.;R.R.Colwell https://doi.org/10.1128/MMBR.64.1.69-114.2000
  29. Appl. Environ. Microbiol. v.58 Distribution of viruses in the Chesapeake Bay Wommack,K.E.;R.T.Hill;M.Kessel;D.K.Russ;E.Cohen;R.R.Colwell