DOI QR코드

DOI QR Code

Bragg Gratings Generated by Coupling of Surface Plasmons Induced on Metal N anoparticles

  • Song, Seok-Ho (Microoptics National Research Laboratory (NRL), Department of Physics, Hanyang University) ;
  • Won, Hyong-Sik (Microoptics National Research Laboratory (NRL), Department of Physics, Hanyang University) ;
  • Choi, Ki-Young (Microoptics National Research Laboratory (NRL), Department of Physics, Hanyang University) ;
  • Oh, Cha-Hwan (Microoptics National Research Laboratory (NRL), Department of Physics, Hanyang University) ;
  • Kim, Pill-Soo (Microoptics National Research Laboratory (NRL), Department of Physics, Hanyang University) ;
  • Shin, Dong-Wook (Department of Ceramic Engineering, Hanyang University)
  • 투고 : 2004.02.24
  • 발행 : 2004.03.01

초록

Diffraction Bragg gratings consisting of metal (silver) nanoparticles are generated inside a soda-lime glass substrate. After ion-exchanging and annealing processes in the glass, the silver nanoparticles are first formed with the particle diameters of 10 nm ∼ 30 nm. By interfering two CW laser beams at ∼ 60 ${\mu}{\textrm}{m}$ deep under the surface of the nanoparticles-dispersed glass, Bragg gratings with thickness of 15 ${\mu}{\textrm}{m}$ and period of 3.5 ${\mu}{\textrm}{m}$ are generated. Diffraction efficiency of the gratings formed by two TE-polarized beams is three times higher than that by two TM-polarized beams. From this polarization dependence, we have found that strong coupling of the surface plasmons induced on the metal particles may contribute dominantly to generate the diffraction grating.

키워드

참고문헌

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer- Verlag, Heidelberg, Germany, 1995), pp. 13-123
  2. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J.R. Krenn, A. Leitner, and F. R. Aussenegg, 'Metl Nannoparticle gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance,' Phys. Rev. Lett., vol. 84, no. 20, pp. 4721-4724, 2000 https://doi.org/10.1103/PhysRevLett.84.4721
  3. Stefan A. Maier, Mark L. Brngersma, Pieter G. Kik, and Harry A. Atwater, 'Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,' Phys. Rev. B, vol. 65, no. 19, pp. 1934081-1934084, 2002 https://doi.org/10.1103/PhysRevB.65.193408
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, 'Electromagnetic energy transport via linear chains of silver nanoparticles,' Opt. Lett., vol. 23, no. 17, pp. 1331-1333, 1998 https://doi.org/10.1364/OL.23.001331
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio., and P. A. Wolff., 'Extraordinary optical transmission through sub-wavelength hole arrays,' Nature, vol. 391, no. 6668, pp. 667-669, 1998 https://doi.org/10.1038/35570
  6. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke,L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, 'Beaming Light from a Subwavelength Aperture,' Science, vol. 297, no. 5582, pp. 820-822, 2002 https://doi.org/10.1126/science.1071895
  7. M.Yano, M. Fukui, M. Haraguchi, and Y. Shintani, 'Insitu and real-time observation of optical constants of metal films during growth,' Surf. Sci., vol. 227, no., pp. 129-137, 1990 https://doi.org/10.1016/0039-6028(90)90400-3
  8. N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, 'Zero permittivity materials: Band gaps at the visible,' Appl. Phys. Lett., vol. 80, no. 7, pp. 1120-1122, 2002 https://doi.org/10.1063/1.1449529
  9. J. Yoon, G. Lee, S. H. Song, C. Oh, and P. Kim, 'Surface-plasmon photonics band gaps in dielectric gratings on flat metal surface,' J. Appl. Phys., vol. 94, no. 1, pp. 123-129, 2003 https://doi.org/10.1063/1.1577396
  10. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, 'Refraction in media with a negative refractive index,' Phys. Rev. Lett., vol. 90, no. 10, pp. 1074021-1074024, 2003 https://doi.org/10.1103/PhysRevLett.90.107402
  11. Koshiro Kaneko and Hong-Bo Sun, Xuan-Ming Duan, Satoshi Kawata, 'Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,' Appl. Phys. Lett., vol. 83, no. 7, pp. 1426-1428, 2003 https://doi.org/10.1063/1.1601302
  12. M. Kaempfe, T. Rainer, K-J. Berg, G. Seifert, and H. Graener, "Ultrashort laser pulse induced deformation of silver nanoparticles in glass," Appl. Phys. Lett., vol. 74, no. 9, pp. 1200-1202, 1999 https://doi.org/10.1063/1.123498
  13. S.Slraj Najafi, Introduction to Glass Integrated Optics, (Artech House, Boston, USA, 1992), pp. 7-38
  14. I. Tanahashi, M. Yoshida, Y. Manabe, and T. Tohda, "Effects of heat treatment on Ag particle growth and optical properties in $Ag/Si0_2$ glass composite thin films," J. Mater. Res., vol. 10, no. 2, pp. 362-365, 1995 https://doi.org/10.1557/JMR.1995.0362
  15. C.montero, C. Gomez-Reino, and J.L. Brebner, "Planar bragg gratings made by excimer-laser modification of ion-exchanged waveguides," Opt. Lett., vol. 24, no. 21, pp. 1487-1489, 1999 https://doi.org/10.1364/OL.24.001487
  16. O. M. Efimov, L.B. Glebov, L. N. Glebova, K C. Richardson, and V. I. Smirnov, "High-efficiency bragg gratings in photothermorefractive glass," Appl. Opt., vol. 38, no. 4, pp. 619-627, 1999 https://doi.org/10.1364/AO.38.000619
  17. DanielL. Feldheim and Colby A. Foss, Jr., Metal Nanoparticles, ( Marcel Dekker, New York, USA, 2002), pp. 110-113
  18. Hiroharu Tamarua, Hitoshi Kuwata, Hideki T. :tvIiyazaki, and Kenjiro Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett., vol. 80, no. 10, pp. 1826-1828, 2002 https://doi.org/10.1063/1.1461072
  19. W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, and F.R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun., vol. 220, no. 1-3, pp. 137-141, 2003 https://doi.org/10.1016/S0030-4018(03)01357-9
  20. Zhengxin Liu, Honghong Wang, Hao Li, and Xuemei Wang, "Red shift of plasmon resonance frequency due to interacting Ag nanoparticles embedded in single crystal $Si0_2$ by implantation," Appl. Phys. Lett., vol. 72, no. 15, pp. 1823-1825, 1998 https://doi.org/10.1063/1.121196