References
- Athereoscler. Thromb. v.11 The antioxidant butylated hudroxytoluence protects against atherosclerosis Bjorkhem,I.;A. Henricheson-Freyschuss;O.Breuer;V.Diczfajusy;L.Berflund;P.Henrikson https://doi.org/10.1161/01.ATV.11.1.15
- Anal. Biochem. v.149 Determination of malondialdenhyde by ion-pairing high performance liquid chromatograph Bull,A.W.;L.J.Matnett https://doi.org/10.1016/0003-2697(85)90506-8
- Anal. Biochem. v.19 Iodometric measurement of liquid hydroperoxides in human plasma Cramer,G.L.;J.E.Miller;R.B.Pendleton;W.E.M.Lands
- Ann. Med. v.23 Effect of antioxidants on oxidative modification of LDL Esterbauer,H.;J.H.Gebicki;M. Dieber-Rotheneder;G.Waeg;H.Rable https://doi.org/10.3109/07853899109150520
- Free Radic. Res. Commun. v.6 Continuous monitoring of in vitro oxidation of human low density lipoprotein Esterbauer,H.;G.Striegl;H.Puhl;Rotheneder,M. https://doi.org/10.3109/10715768909073429
- Lancet v.341 Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Frankel,E.N.;J.Kanner;J.B.German;E.Parks;J.E.Kinsella https://doi.org/10.1016/0140-6736(93)90206-V
- Electrophoresis v.14 Detection by Nile red of agarose fel electrophoresed native and modified low density lipoprotein Greenspan,P.;R.L.Gutman https://doi.org/10.1002/elps.1150140111
- Proc. Natl. Acad. Sci. USA v.76 Binding site on macrophages that mediated uptake and degradation of actylated low density lipoprotein, producing massive cholesterol deposition Goldstein,J.L.;S.K.Basu;M.S.Brown https://doi.org/10.1073/pnas.76.1.333
- J. Clin. Invest. v.34 The distribution and chemical composition of ultracentrifugally separated liporpotein in human serum Havel,R.J.;H.A.Eder;J.H.Bragdon https://doi.org/10.1172/JCI103182
- J. Clin. Invest. v.77 Superoxide mediated modification of low density lipoprotein by arterial smooth muscle cells Heinecke,J.W.;H.Rosen;A.Chait https://doi.org/10.1172/JCI112371
- Lancet v.342 Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Studry Hertog,M.;E.Feskens;P.Hollman;M.Katan;D.Kromhout https://doi.org/10.1016/0140-6736(93)92876-U
- Proc. Natl. Acad. Sci. USA v.78 Enhanced macrophage degradation of low density lipo-protein previously tncubated with cultured endotherial cell; recognition by receptor for acetylated low density lipoproteins Henricksen,T.;E.M.Mahoney;D.Stecingerg
- J. Clin. Invest. v.27 Culture of human endothelial cells derived from human umbilical vein Jaffe.E.A;R.L.Nachman;C.C.Becker;C.R.Minick
- Curr. Opin. Lipidol. v.3 Antioxidants and atherosclerosis Jialal,I.;C.Scaccini https://doi.org/10.1097/00041433-199210000-00004
- Biochem. Biophys. Acta. v.1086 β-Carotence inhibits the oxidative modification of low-density lipoprotein. Jialal,I.;E.P.Norkus;L.Cristol.S.M.Grundy https://doi.org/10.1016/0005-2760(91)90164-D
- The role of oxidative modification and antioxidant in LDL metabolism and atherosclerosis, in Antioxidant in Therapy and Preventive Medicine Jessup,W.;R.T.Dean;C.V.de Whalpt;Emerit,I.(ed.);Parker,L.(ed.);Auclair,C.(ed.)
- Biochem. J. v.270 The oxidative modification of low density lipoproteins by macrophages Leake,D.S.;S.M.Rankin
- J. Biol. Chem. v.193 Protein measurement with the Folin phenol reagent Lowry,O.H.;N.J.Rosebrough;A.L.Farr;R.J.Randall
- Chem. Nat. compds. v.30 no.1 Phenolic components of geranium sanguineum Mavlyanov,S.M.;S.Y.Islambekov;A.K.Karimov;A.I.Ismailor https://doi.org/10.1007/BF00638415
- Arterio-sclerosis v.4 Endothelial and smooth muscle cells after low density lipoproteins in vitro by free radical oxidation Morel,D.W.;P.E.DiCorleto;G.M.Chisholm https://doi.org/10.1161/01.ATV.4.4.357
- Ann. Rev. Med. v.43 The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis Parthasarathy,S.;D.Steingerg;J.L.Witztum https://doi.org/10.1146/annurev.me.43.020192.001251
- Lancet v.339 Wine, alcohol, platelets, and the French Paradox for coronary heart disease Rent,D.;M.De Lorgeril https://doi.org/10.1016/0140-6736(92)91277-F
- N. Engl. J. Med. v.320 Beyond choesterol Modifications of low density lipoprotein that increases its atherogenicity Steinberg,D.;S.Prthasarathy;T.E.Catew;J.C.Khoo;J.L.Wiztum https://doi.org/10.1056/NEJM198904063201407
- Free. Radic. Biol. Med. v.9 Role of oxidatively modified LDL in atherosclerosis Steinbrecher,U.P.;H.Zhang;M.Lougheed
- Proc. Natl. Acad. Sci. USA v.85 Antioxidant defenses and lipid peroxidation in human blood plasma. Stocker,R.;V.W.bowry;B.N.Frei https://doi.org/10.1073/pnas.85.24.9748
- Manual of pharmacological calculations with computer programs, 2 ed Tallarida,R.J.;R.B.Murray
- Free Radic. Biol. Med. v.15 Molecular Pharmacology of vitamin E:Structural aspects of antioxidant activity. Van Acker S.A.B.;L.H.Koymans;A.Bast https://doi.org/10.1016/0891-5849(93)90078-9
- J. Clin. Lnvest. v.88 Role of oxidized low-density lipoprotein in atherogenesis Witztum.J.L;D.Steinberg https://doi.org/10.1172/JCI115499
- Biochem Med. v.15 A simple fluorometric assay for lipoprotein in blood plasma. Yaki.K https://doi.org/10.1016/0006-2944(76)90049-1
- J. clin. Invest. v.77 Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man Yia-Herttuala, S.;W.Palinski;M.E.Posenfeld;S.Parthasarathy;T.E.Carew;S.Butler;J.L.Witztum;D.Steringers https://doi.org/10.1172/JCI112349
- Eur. J. Pharmacol. v.214 Inhibits superoxide release from human neutrophilis Yue,T.L.;P.J.Mekenna;R.R.Ruffolo;G.Z.Feuerstein https://doi.org/10.1016/0014-2999(92)90130-V