해안가 매립으로 인한 지하수의 수리화학적 특성

Hydrochemical characteristics in groundwater affected by reclamation

  • 서정율 (시드니대학교 지질학과)
  • 발행 : 2004.03.01

초록

본 연구는 2000년 시드니올림픽사이트의 해안가를 따라 인위적인 매립으로 인한 지하수 내 수리화학적인 특징을 규명하는데 그 목적이 있다. 올림픽게임지역을 3개의 지역, 즉 간척지역(reclaimed area, 과거에는 강구하였으나 폐기물로 매립되어 있으며 현재는 조수간만 보다 높은 지역), 매립지역(landfill area, 해수면 위에 폐기물을 매립한 지역), 그리고 자연 상태지역(non-infilled area, 폐기물의 매립이 전혀 없었던 지역))으로 나누어 조사하였다. 또한 시추공 심도별로 심부시추공, 천부시추공 및 스텐드파이프로 구분하여 상대적인 농도들의 거동을 상오 비교하였다. 그 결과 간척지역 내 지하수는 Na, K 그리고 Mg 이온이 지배적이지만 매립지역은 Na 그리고 K가 지배적인 이온이다. 또한 간척지역 및 자연 상태지역의 지하수는 Mg 및 Ca 농축이 특징이지만, 매립지역은 K 및 $NO_3$의 농축이 특징이다. 그러나 시추공심도 별로 살펴보면 심부시추공 지하수는 Na와 Mg가 지배적이지만 천부시추공 및 스텐드파이프 지하수는 Na와 K가 지배적인 원소로 나타났다. 간척지역, 매립지역 그리고 자연 상태지역 지하수 내 전기전도도와 중금속 농도와는 명확한 상관관계를 보여 주지 않는다. 간척지역 및 자연 상태지역과 비교 시 매립지역 지하수의 Fe 및 Mn의 농도는 pH가 감소함에 따라 현저히 증가하는 양상을 보여준다. 심부시추공과 천부시추공 지하수 내 평균 전기전도도 값은 스텐드파이프보다 높지만 스텐드파이프 지하수 내 전기전도도 값의 최대 및 최소 값은 현저한 차이를 보이는데 이는 국부적인 공동의 영향으로 사료된다. 심부시추공, 천부시추공, 그리고 스텐드파이프 지하수 내 pH 대비 중금속(Cu, Pb, Zn, Cr) 농도사이의 상관관계는 없었지만 이들 지하수 내 Fe와 Mn은 pH가 감소하면 농도가 증가하는 양상을 보여준다. 지하수 내 농축된 중금속 농도는 매립된 폐기물의 성상과 밀접한 관계를 보이며 해안가를 따라 매립되어 있는 지역의 토양 내 중금속의 용출은 주변 환경에 대한 잠재적인 환경위험을 결정 시 중요한 역할을 한다.

This study focuses on the hydrochemical characteristics in goundwater affected by reclamation at 2000 Sydney Olympic Games site, Sydney, Australia. The Olympic Games site can be divided into three areas, i.e. reclaimed areas; landfill areas and non-infilled areas. In the current work, 'reclaimed areas' were previously estuarine, and were filled with waste materials and are now above present high tide level, whereas 'landfill areas' are areas where deposition of waste materials occurred above sea level. No deposition of waste took place in 'non-infilled areas'. This study was also evaluated by three different types such as deep boreholes, shallow boreholes and standpipes. The hydrochemishy of groundwaters in reclaimed and non-in-filled areas is characterized by Mg- and Ca-enrichment, whereas groundwaters in landfill areas are elevated in K and NO₃. Na, K and Mg are the dominant cations in groundwater from reclaimed areas and Na and K are the dominant cations in groundwater in landfill areas. Na and Mg are the dominant cations in groundwater in deep boreholes, whereas Na and K are the dominant cations in groundwater in shallow boreholes and standpipes. There is no distinct trend in heavy metals with electrical conductivity in the groundwater between the re-claimed, landfill and non-infilled areas. Fe and Mn in landfill areas with respect to reclaimed areas and non-infilled areas show a distinct increase in concentration with declining pH. Mean electrical conductivity values in the deep and shallow boreholes are higher than that of standpipes, but the minimum and maximum value of electrical conductivity in groundwater in standpipes shows remarkably different value, probably due to perched pond. There is no correlation between Cu, Pb, Zn, Cr concentrations in groundwater with pH, from deep boreholes, shallow boreholes and standpipes, except for Fe and Mn, which demonstrate increasing concentrations with declining pH. The results revealed a close association between elevated concentrations in groundwater and the presence of fill materials at the site. Trace metals teachability from re-claimed soils adjacent to estuary plays a significant role in determining their potential environmental risk to surrounding environment.

키워드

참고문헌

  1. Journal of Hydrology v.241 Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo Adams,S.;Titus,R.;Pietersen,K.;Tredoux,G.;Harris,C. https://doi.org/10.1016/S0022-1694(00)00370-X
  2. India. Environmental Geology v.38 Status of anthropogenically induced metal pollution in the Kanpur-Unnao industrial region of the Ganga Plain Ansari,A.A.;Singh,I.B.;Tobschall,H.J. https://doi.org/10.1007/s002540050397
  3. American Public Health Association, American Water Works Association Standard methods for the Examination of Water & Wastewater APHA
  4. Journal of Australian Geological & Geophysics v.14 Resourcing the investigation and management of groundwater contamination in Western Australia-a case study of contamination from herbicide manufacture near Perth, AGSO Appleyard,S.J.
  5. Environmental Geology v.28 Impact of liquid waste disposal on portable groundwater resources near Perth Appleyard,S.J. https://doi.org/10.1007/s002540050083
  6. Design, Construction and Monitoring Landfill Bagchi,A.
  7. Geochim Cosmochim Acta v.58 The geochemical cycling of trace elements in a biogenetic meromictic lake Balistrieri,L.S.;Murray,J.W.;Paul,B. https://doi.org/10.1016/0016-7037(94)90262-3
  8. Environmental Geology v.40 Rehabilitation of industrial area:case histories from England and Germany Bell,F.G.;Genske,D.D.;Bell,A.W. https://doi.org/10.1007/s002540000158
  9. Applied Geochemistry v.1 Adsorption of Cu, Pb and Zn by MnO₂:Applicability of the site binding surface complexation model Catts,J.G.;Langmuir,D. https://doi.org/10.1016/0883-2927(86)90010-7
  10. Water Research v.30 Effect of dissolved organic carbon on the mobility of cadmium, nickel and zinc in leachate polluted groundwater Christensen,J.B.;Jensen,D.L.;Christensen,T.H. https://doi.org/10.1016/S0043-1354(96)00091-7
  11. Historical research, Department of Public Works v.2 Homebush Bay soil and groundwater contamination investigation Coffey;Partner
  12. Journal of Collid Interface Science v.67 Surface ionization and complexation at the oxide/water interface 2. Surface properties of amorphous iron oxyhydroxide and adsoprtion of metal ions Davis,J.A.;Leckie,J.O. https://doi.org/10.1016/0021-9797(78)90217-5
  13. Earth-Science Review v.34 Iron and manganese in lakes Davison,W. https://doi.org/10.1016/0012-8252(93)90029-7
  14. SE Nigeria. Environmental Geology v.39 Geochemical evaluation of suitability of sites ofr hazardous waste disposal:a case study of recent and old waste-disposal sites in Calabar Municipality Ekpo,B.O.;Ibok,U.J.;Umoh,N.D. https://doi.org/10.1007/s002540000114
  15. Journal of Hydrology v.140 Pollution-related acidfication in the urban aquifer Ford,M.;Tellam,J.H.;Hughes,M. https://doi.org/10.1016/0022-1694(92)90245-Q
  16. Groundwater Freeze,R.A.;Cherry,J.A.
  17. Japan. Estuarine Coastal and Shelf Science v.50 The role of a man-made headland in generating patches in coastal waters of Ise Bay Furukawa,K. https://doi.org/10.1006/ecss.1999.0529
  18. Journal of Environmental Quality v.23 Trace and toxic metals in wetland Gambrell,R.P. https://doi.org/10.2134/jeq1994.00472425002300050005x
  19. Agriculture Water Management v.14 Change of characteristics of granular aquifer agricultural ateas Goldberg,L.C.
  20. Journal of Environmental Management v.42 Hydrological and chemical management in the rehibilitation of an aquifer Goldenberg,L.C.;Melloul,A.J. https://doi.org/10.1006/jema.1994.1071
  21. Environmental Science * Technology v.27 Characteristics and environmental significance of colloids in landfill leachate Gounaris,V.;Anderson,P.R.;Holsen,T.M. https://doi.org/10.1021/es00044a013
  22. Geological Society of American Bulletin v.83 Chemical factors that influence the availability of iron and manganese in aqueous systems Hem,J.D. https://doi.org/10.1130/0016-7606(1972)83[443:CFTITA]2.0.CO;2
  23. Briefing document on site contamination and environmental investigations at Homebush Bay Homebush Bay Corporation
  24. Journal of Hydrology v.211 Characterization of the hydrology of an estuarine wetland Hughes,C.E.;Binning,P.;Willgoose,G.R. https://doi.org/10.1016/S0022-1694(98)00194-2
  25. Waste Management v.16 Leaching behaviour and solubility-controlling solid phases pf heavy metals in minucipal solid waste incinerator ash Johnson,C.A.;Ziegler,F.;Kersten,M.;Moor,H.C. https://doi.org/10.1016/S0956-053X(96)00036-0
  26. Soil and Sediment Contamination v.9 Compartment for the management of municipal solid waste Kaoser,S.;Barrington,S.;Elektorowicz,M. https://doi.org/10.1080/10588330091134374
  27. Estuarine Coastal and Shelf Science v.45 Coastal tidally-driven circulation and the role of water exchange in the linkage between tropical coastal ecosystems Kitheka,J.U. https://doi.org/10.1006/ecss.1996.0189
  28. Water Environment Research v.69 Environmental monitoring of the North Porto Alegre landfill Kuajara,O.;Sanchea,J.C.D.;Ballestrin,R.A.;Teixeira,E.C. https://doi.org/10.2175/106143097X125920
  29. Environmental Geology v.33 Early-indicator signals of groundwater contamination:the case of seawater encrochment Melloul,A.J.;Goldenberg,L.C. https://doi.org/10.1007/s002540050247
  30. Oklahoma Geology Notes v.43 Geologic and land-use effects on groundwater quality in shallow wells of the Anadarko Basin Nancy,J.W.;Smith,S.J.
  31. Journal of Hydrology v.63 Migration of contaminants in groundwater at a landfill:A case study. 6 Nicholson,R.V.;Cherry,J.A.;Reardon,E.J. https://doi.org/10.1016/0022-1694(83)90226-3
  32. Environmental Strategy no.1 Homebush Bay Development Guidelines Olympic Coordination Authority
  33. State of the Environment Report Olympic Coordination Authority
  34. Ground Water v.27 Patterns of Ground-water chemistry Ophoti,D.U.;Toth,M. https://doi.org/10.1111/j.1745-6584.1989.tb00003.x
  35. Human impact on the earth's surface(Second edition) An introduction to global environmental issues Pickering,K.T.;Owen,L.A.
  36. American Geophysics Union v.25 A graphic procedure in the geochemical interpretation of water analyses Piper,A.M. https://doi.org/10.1029/TR025i006p00914
  37. Environmental Geology v.40 Saline fresh water interface structure in Mahanadi delta region Radhakrishna,I. https://doi.org/10.1007/s002540000182
  38. Environmental Geology v.40 Characterization of groundwater flow in the Bailin hazardous waste-disposal site Sanchez Navarro, J. A.;Lopez,C.;Garcia,A.P. https://doi.org/10.1007/s002540000154
  39. Ph.D. thesis, University of Sydney The hydrogeochemical characteristics of soils and aquifers in reclaimed lands of Port Jackson Suh,J.Y.
  40. Marine and Freshwater Research, 54 v.6 Hydrogeochemical characteristics and importance of natural and anthropogenic influences on soil and groundwater in reclaimed land adjacent to Port Jackson Suh,J.Y.;Brown,P.L.;Birch,G.F.
  41. Marine and Freshwater Research, 54 v.7 Geochemical factors affecting leachate composition derived from soils in reclaimed land using laboratory fresh and saline water column experiments Suh,J.Y.;Brown,P.L.;Birch,G.F.
  42. Water Science Technology v.31 The impact of land reclamation on groundwater quality and future drinking water supply in the Netherlands Stuyfzand,P.J.
  43. Palaeogeography, Palaeoclimate, Palaeoecology v.82 Soil contamination in urban areas Thornton,I. https://doi.org/10.1016/S0031-0182(12)80026-5
  44. Environmental Geology v.37 Chemical composition of landfill leachate in a karst area with a Mediterranean climate Vadillo,I.;Carrasco,F.;Andreo,B.;Garcia,A.;Bosch,C. https://doi.org/10.1007/s002540050391
  45. Water Science Technology v.37 Mobility of contaminants in relation to dredging operations in a mesotidal estuary Vale,C.;Ferraira,A.M.;Micaelo,C.;Caetano,M.;Pereira,E.;Madureira,M.;Ramalhosa,E.
  46. Guidelines for drinking water quality health criteria and other supporting information v.2 World Health Organization(WHO)