Improvement of Shoot Regeneration from Scutella-Derived Callus in Rice

  • Kim, Yong-Wook (Department of Plant Resources, Dongguk University) ;
  • Cho, Joon-Hyeong (Division of Environment and Biotechnology, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Jang-Yong (Division of Environment and Biotechnology, National Institute of Crop Science, Rural Development Administration)
  • Published : 2004.03.01

Abstract

The optimized in vitro culture system was investigated for improvement of regeneration efficiencies by observing the responses of scutella-derived callus of Korean rice (Oryza sativa L.). Large variations of callus induction (43.9-93.9%) and shoot regeneration (0-88.7%) were observed among the rice cultivars depending on medium. However, shoot regeneration was significantly improved by selected utilization of basal medium, growth regulators, and carbon sources. N6 basal medium was more efficient for embryogenic callus induction than MS or LS basal medium, while MS was superior to N6 for shoot regeneration. The calli of highly regenerative cultivars grew faster and showed higher rates of green tissue formation (GT) and shoot regeneration (SR) and lower rate of callus browning (CB) than those of recalcitrant cultivars. Although a higher level of kinetin stimulated the GT and SR in highly regenerative cultivars, $10\textrm{mgL}^{-1}$ kinetin generally suppressed the GT and SR, while CB was accelerated compared to $2\textrm{mgL}^{-1}$ kinetin. Additional benefits of sorbitol combined with maltose (or sucrose) under $5\textrm{mgL}^{-1}$ kinetin were certainly confirmed on regeneration efficiencies compared to sucrose alone as carbon source and osmotic regulator. This combination showed high rate of GT and SR with multiple shoots while low rate of CB. With MSRK5SM-Pr medium ($5\textrm{mgL}^{-1}$ kinetin, 3% sorbitol, 2% maltose, $500\textrm{mgL}^{-1}$ proline), the regeneration efficiencies of total 17 out of 24 cultivars were practically improved 160% on average compared to MSRK2S ($2\textrm{mgL}^{-1}$ kinetin, 3% sucrose) control medium. Especially, the medium was most effective to the cultivars showing a medium level of regenerability such as Daesanbyeo and Dongjinbyeo and Suwon477, enhancing efficiencies more than 300-600% compared to MSRK2S medium.

Keywords

References

  1. Aldemita, R. R. and T. K. Hodges. 1996. Agrobacterium tumefeciens-mediated transformation of japonica and indica rice varieties. Planta. 199 : 612-617
  2. Chen, L., S. Zhang, R. N. Beachy, and C. M. Fauquet. 1998. A proctocol for consistant, large-scale production of fertile transgenic rice plants. Plant Cell Rep. 18 : 25-31 https://doi.org/10.1007/s002990050526
  3. Chu, C. c, C. C. Wang, C. S. Sun, C. Hsu, K. C. Yin, C. Y. Chu, and E Y. Bi. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sinica. 18 : 659-668
  4. Datta, K., J. Tu, N. Oliva, L. ana, R. Velazhahan, T. W. Mew, S. Muthukrishnan, and S. K. Datta. 2001. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci.160 : 405-414 https://doi.org/10.1016/S0168-9452(00)00413-1
  5. Datta, K., Z. Koukolikova-Nikola, N. Baisakh, N. Oliva, and S. K. Datta. 2000. Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor. Appl. Genet. 100 : 832-839 https://doi.org/10.1007/s001220051359
  6. Hashizume, F., T. Tsuchiya, M. Ugaki, Y. Niwa, N. Tachibana, and Y Kowyama. 1999. Efficient Agrobacterium-mediated transformation and the useless of a synthetic GFP reporter gene in leading varieties of japonica rice. Plant Biothech. 16 : 397-401 https://doi.org/10.5511/plantbiotechnology.16.397
  7. Hiei, Y, S. Ohta, T. Komari, and T. Kumashiro. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA. The Plant J. 6(2) : 271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  8. Jain, R. K., G. S. Khera, S. H. Lee, N. W. Blackhall, R. Marchant, M. R. Davey, I. B. Power, E. C. Cocking, and S. S. Gosal. 1995. An improved procedure for plant regeneration from indica andjaponica rice protoplasts. Plant Cell. Rep. 14: 515-519.
  9. Jiang, I., S. D. Linscombe, J. Wang, and I. H. Oard. 2000. High efficiency transformation of U. S. rice lines from mature seedderived calli and segregation of Glufosinate resistance under field condition. Crop Sci. 40 : 1729-1741 https://doi.org/10.2135/cropsci2000.4061729x
  10. Kishor, P. B. K. and G. M. Reddy. 1986. Retension and revival of regenerating ability by osmotic adjustment in long-term cultures of four varieties of rice. J. of Plant Physiol. 126 : 49-54 https://doi.org/10.1016/S0176-1617(86)80215-2
  11. Kwon, Y S., K. M. Kim, D. H. Kim, M. Y Eun, and J. K. Sohn. 2002. Marker assisted introgression of quantitative trait loci associated with plant regeneration ability in anther culture of rice (Oryza sativa L.). Mol. Cell. 14(1) : 24-28
  12. Kwon, Y S., K. M. Kim, M. Y Eun, and I. K. Sohn. 2001. Quantitative trait loci mapping associated with plant regeneration ability from seed derived calli in rice (Oryza sativa L.). Mol. Cell. 11(1) : 64-67
  13. Kyozuka, J., Y Hayashi, and K. Shimamoto. 1987. High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Mol. Gen. Genet. 206 : 408-413 https://doi.org/10.1007/BF00428879
  14. Lee, K., H. Jeon, and M. Kim. 2002. Optimization of a mature embryo-based in vitro culture system for high frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell Tiss. Org. Cult. 71 : 237-244 https://doi.org/10.1023/A:1020305432315
  15. Lee, S. H., Y G. Shon, S. I. Lee, C. Y Kim, I. C. Koo, C. O. Lim, Y I. Choi, C. D. Han, C.H. Chung, Z.R. Choe, and MJ. Cho. 1999. Cultivar variability in the Agrobacterium-rice cell interaction and plant regeneration. Physiol. Plantarum. 107: 338-345 https://doi.org/10.1034/j.1399-3054.1999.100311.x
  16. Linsmaier, E. and E Skoog. 1965. Organic growth factor requirments of tabacco tissue cultures. Physiol. Plant. 18 : 100-127 https://doi.org/10.1111/j.1399-3054.1965.tb06874.x
  17. Murashinge, T. and E Skoog. 1962. A revised medium for rapid growth and bioassay with tabacco tissue culture. Physiol. Plant. 15 : 473-479 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Rashid, H., S. Yokoi, K. Toriyama, and K. Hinata. 1996. Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep. 15 : 727-730 https://doi.org/10.1007/BF00232216
  19. Sivamani, E., P. Shen, N. Opalka, R. N. Beachy, and C. M. Fauquet. 1996. Selection of large quantities of embryogenic calli from indica rice seeds for production of fertile transgenic plants using the biolistic method. Plant Cell. Rep. 15 : 322-327 https://doi.org/10.1007/BF00232364
  20. Song, M. T., j. H. Lee, Y.S. Cho, Y.H. Jeon, S. B. Lee, j. W. Ku, S. H. Choi, and H. G. Hwang. 2002. Narrow genetic background of Korean rice germplasm as revealed by DNA fingerprinting with SSR markers and their pedigree information. Korean J of Gen. 24(4) : 397-403
  21. Su, R. C, M. L. Rudert, and T.K. Hodges. 1992. Fertile indica and japonica rice plants regenerated from protoplasts isolated from embryogenic haploid suspension cultures. Plant Cell. Rep. 12 : 45-49
  22. Swedlund, B. and R. D. Locy. 1993. Sorbitol as the primary carbon source for the growth of embryogenic callus of maize. Plant Physiol. 103 : 1339-1346 https://doi.org/10.1104/pp.103.4.1339
  23. Taguchi-Shirobara, F., S. Y. Lin, K. Tanno, T. Komatsuda, M.Yano, T. Sasaki, and S. Oka. 1997. Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor. App. Gen. 95 : 828-833 https://doi.org/10.1007/s001220050632
  24. Toki, S. 1997. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol. BioI. Rep. 15(1) : 16-21 https://doi.org/10.1007/BF02772109
  25. Tomes, D. T. and O. S. Smith. 1985. The effect of parental geno-type on initiation of embryogenic callus from elite maize (Zeamays L.) germ plasm. Theor. Appl. Genet. 70 : 505-509 https://doi.org/10.1007/BF00305983
  26. Xue, Q. and E. D. Earle. 1995. Plant regeneration from protoplasts of cytoplasmic male sterile lines of rice (Oryza sativa L.). Plant Cell Rep. 15: 76-81 https://doi.org/10.1007/BF01690258
  27. Yang, Y. S., Y. D. Zheng, Y. L. Chen, and Y.Y. Jian. 1999. Improvement of plant regeneration from long-term cultured calluses of Taipei 309, a model rice variety in in vitro studies. Plant Cell Tiss. Org. Cult. 57: 199-206 https://doi.org/10.1023/A:1006329323694
  28. Yin, Y., S. Li, Y. Chen, H. Guo, W. Tian, Y Chen, and L. Li. 1993. Fertile plants regenerated from suspension culture-derived protoplasts of an indica type rice (Oryza sativa L.). Plant Cell Tiss. Org. Cult. 32 : 61-68 https://doi.org/10.1007/BF00040117
  29. Zhang, S. 1995. Efficient plant regeneration from indica (group 1) rice protoplasts of one advanced breeding line and three varieties. Plant Cell Rep. 15 : 68-71 https://doi.org/10.1007/BF01690256