AFM and Specular Reflectance IR Studies on the Surface Structure of Poly(ethylene terephthalate) Films upon Treatment with Argon and Oxygen Plasmas

  • Seo, Eun-Deock (Division of Chemical Engineering, Kyungnam University)
  • 발행 : 2004.02.01

초록

Semi-crystalline poly(ethylene terephthalate) (PET) film surfaces were modified with argon and oxygen plasmas by radio-frequency (RF) glow discharge at 240 mTorr/40 W; the changes in topography and surface structure were investigated by atomic force microscopy (AFM) in conjunction with specular reflectance of infrared microspectroscopy (IMS). Under our operating conditions, analysis of the AFM images revealed that longer plasma treatment results in significant ablation on the film surface with increasing roughness, regardless of the kind of plasma used. The basic topographies, however, were different depending upon the kind of gas used. The specular reflectance analysis showed that the ablative mechanisms of the argon and oxygen plasma treatments are entirely different with one another. For the Ar-plasma-treated PET surface, no observable difference in the chemical structure was observed before and after plasma treatment. On the other hand, the oxygen-plasma-treated PET surface displays a significant decrease in the number of aliphatic C-H groups. We conclude that a constant removal of material from the PET surface occurs when using the Ar-plasma, whereas preferential etching of aliphatic C-H groups, with respect to, e.g. , carbonyl and ether groups, occurs upon oxygen plasma.

키워드

참고문헌

  1. Mater. Sci. Eng. R v.36 R.K.Chu;J.Y.Chen;L.P.Wang;N.Huang https://doi.org/10.1016/S0927-796X(02)00004-9
  2. J. Appl. Polym. Sci. v.78 B.Gupta;J.Hilborn;C.H.Hollenstein;C.J.G.Plummer;R.Houriet;N.Xanthopoulos https://doi.org/10.1002/1097-4628(20001031)78:5<1083::AID-APP170>3.0.CO;2-5
  3. J. Appl. Polym. Sci. v.38 Y.L.Hsieh;M.Wu https://doi.org/10.1002/app.1989.070380911
  4. Polymer v.19 A.M.Wrobel;M.Kryszewski;W.Rakowski;M.Owkoniewski;Z.Kubacki https://doi.org/10.1016/0032-3861(78)90197-0
  5. Biomaterials v.15 Piglowski,I.;Gancarz,J.;Staniszewska-Kus;D.Paluch;M.Szimonowicz;A.Konieczny https://doi.org/10.1016/0142-9612(94)90116-3
  6. Biotechnol. Bioeng v.43 R.Singhvi;A.Stephanopoulos;D.J.C.Wang https://doi.org/10.1002/bit.260430811
  7. J. Biomater. Sci. Polym. Ed. v.7 A.F.van Rectum;T.G.van Kooten
  8. Macromol. Res. v.10 S.J.Lee;Y.M.Lee;G.Khang;I.Y.Kim;B.Lee;H.B.Lee https://doi.org/10.1007/BF03218265
  9. Macromol. Res. v.10 G.Khang;J.M.Lee;P.Shin;I.Y.Kim;B.Lee;Y.M.Lee;H.B.Lee;I.Lee https://doi.org/10.1007/BF03218266
  10. Polymer v.23 G.Khang;J.H.Jeon;J.M.Rhee;H.B.Lee https://doi.org/10.1016/0032-3861(82)90147-1
  11. Surf. Coat. Tech. v.116 A.Ohl;K.Schroder https://doi.org/10.1016/S0257-8972(99)00150-4
  12. Plasmas Polym. v.6 S.Lerouge;M.R.Wertheimer;L.H.Yahia https://doi.org/10.1023/A:1013196629791
  13. Biocompatibility of Solid Substrates Based on Surface Wettability, in Encyclopedic Handbook of Biomaterials and Bioengineering:Part A. Materials v.1 H.B.Lee;J.H.Lee;D.L.Wise(ed.);D.J.Trantolo(ed.);D.E.Altobelli(ed.);M.J.Yaszemski(ed.);J.D.Gresser(ed.);E.R.Schwarz(ed.)
  14. Korea Polym. J. v.9 G.Khang;M.K.Choi;J.M.Lee;S.J.Lee;H.B.Lee;Y.Iwasaki;N.Nakabayashi;K.Ishihara
  15. Polymer v.15 Y.R.Kang;H.S.Lym;E.D.Seo
  16. Surf. Coat. Tech. v.96 S.W.Ha;R.Hauert;K.H.Emst;E.Wintermantel https://doi.org/10.1016/S0257-8972(97)00179-5
  17. Plasma Polymerization H.Yasuda
  18. J. Appl. Polym. Sci. v.46 F.Clouet;M.K.Shi https://doi.org/10.1002/app.1992.070461108
  19. J. Appl. Polym. Sci. v.79 N.Inagaki;S.Tasaka;S.Shimada https://doi.org/10.1002/1097-4628(20010131)79:5<808::AID-APP50>3.0.CO;2-B
  20. Polymer v.38 D.M.Cho;C.K.Park;K.Cho;C.E.Park https://doi.org/10.1016/S0032-3861(97)00175-4
  21. Modern Approaches to Wettability M.E.Schrader;G.I.Loeb
  22. The Physical Chemistry of Surfaces(5th Ed.) A.W.Adamson
  23. J. Appl. Polym. Sci. v.11 H.Schonhorn;H.Hansen https://doi.org/10.1002/app.1967.070110809
  24. Cold Plasma in Materials Fabrication-from Fundamentals to Applications A.Grill