Preparation and Properties of in situ Polymerized Poly(ethylene terephthalate)/Fumed Silica Nanocomposites

  • Hahm, Wan-Gyu (Department of Textile and Polymer Engineering, College of Engineering, Hanyang University) ;
  • Myung, Hee-Soo (Department of Textile and Polymer Engineering, College of Engineering, Hanyang University) ;
  • Im, Seung-Soon (Department of Textile and Polymer Engineering, College of Engineering, Hanyang University)
  • Published : 2004.02.01

Abstract

We have prepared poly(ethylene terephthalate) (PET) nanocomposites filled with two different types of fumed silicas, hydrophilic (FS) and hydrophobic (MFS) silicas of 7-nm diameter, by in situ polymerization. We then investigated the morphological changes, rheological properties, crystallization behavior, and mechanical properties of the PET nanocomposites. Transmission electron microscopy (TEM) images indicate that the dispersibility of the fumed silica was improved effectively by in situ polymerization; in particular, MFS had better dispersibility than FS on the non-polar PET polymer. The crystallization behavior of the nanocomposites revealed a peculiar tendency: all the fillers acted as retarding agents for the crystallization of the PET nanocomposites. The incorporation of fumed silicas increased the intrinsic viscosities (IV) of the PET matrix, and the strong particleparticle interactions of the filler led to an increased melt viscosity. Additionally, the mechanical properties, toughness, and modules of the nano-composites all increased, even at low filler content.

Keywords

References

  1. Polymer v.42 J.W.Cho;D.R.Paul https://doi.org/10.1016/S0032-3861(00)00380-3
  2. Polymer v.42 T.D.Fornes;P.J.Toon;H.Keskkula;D.R.Paul https://doi.org/10.1016/S0032-3861(01)00552-3
  3. J. Appl. Polym. Sci. v.49 Y.Kojima;A.Usaki;M.Kawasumi;A.Okata;T.Kurauchi;O.Kamigaito https://doi.org/10.1002/app.1993.070490715
  4. Polymer v.43 J.H.Chang;B.S.Seo;D.H.Hwang https://doi.org/10.1016/S0032-3861(02)00125-8
  5. Macromol. Res. v.10 J.G.Ray;J.W.Lee;H.S.Kim https://doi.org/10.1007/BF03218304
  6. J. Polym. Sci. Part A:Polym. Chem. v.33 P.B.Messesmith;E.P.Giannelis https://doi.org/10.1002/pola.1995.080330707
  7. Technical Bulletin Pigments No. 11
  8. Colloid Surface A v.101 H.Barthel https://doi.org/10.1016/0927-7757(95)03179-H
  9. Kaut. Gummi. Kunstst v.39 J.B.Donnet;M.J.Wang;E.Papirer;A.Vidal
  10. Prog. Org. Coat. v.40 M.Ettlinger;T.Ladwig;A.Weise https://doi.org/10.1016/S0300-9440(00)00151-X
  11. Macromol. Res. v.10 S.C.Chung;W.G.Hahm;S.S.Im;S.G.Oh https://doi.org/10.1007/BF03218309
  12. Polymer v.42 E.Reynaud;T.Jouen;C.Gauthier;G.Vigier;J.Varlet https://doi.org/10.1016/S0032-3861(01)00446-3
  13. J. Appl. Polym. Sci. v.69 F.Yang;Y.C.Ou;Z.Z.Yu https://doi.org/10.1002/(SICI)1097-4628(19980711)69:2<355::AID-APP17>3.0.CO;2-V
  14. Polymer v.42 Z.R.Min;Q.Z.Ming;X.Z.Yong;M.Z.Han;R.Walter;K.Friendrich https://doi.org/10.1016/S0032-3861(00)00325-6
  15. US Patent, 6.191.122 B1 H.G.Lux;K.Meier;A.Muller;R.Oelmuller;A.Ramb
  16. Mechanical Properties of Polymers and Composites L.E.Nielsen;R.F.Landel
  17. Macromolecules v.22 C.D.Han;J.Kim;J.K.Kim https://doi.org/10.1021/ma00191a071
  18. J. Chem. Phys. v.7 M.Avrami https://doi.org/10.1063/1.1750380
  19. J. Chem. Phys. v.8 M.Avrami https://doi.org/10.1063/1.1750631
  20. J. Chem. Phys. v.9 M.Avrami https://doi.org/10.1063/1.1750872
  21. J. Polym. Sci. B v.2 H.Z.Friendlander;C.R.Frick https://doi.org/10.1002/pol.1964.110020435
  22. Macromolecular Physics:Crystal Melting v.3 B.Wunderlich
  23. J. Appl. Polym. Sci. v.14 T.B.Lewis;L.E.Nielsen https://doi.org/10.1002/app.1970.070140604
  24. J. Appl. Phys. v.41 L.E.Nielsen https://doi.org/10.1063/1.1658506
  25. Polym. Comp. v.2 S.McGee;R.L.McCullough https://doi.org/10.1002/pc.750020403
  26. Handbook of Fillers and Reinforcements for Plastics H.S.Katz;J.V.Milewski
  27. US Patent 531976 J.J.Breuning;R.D.Johnson;G.K.Morris