DOI QR코드

DOI QR Code

Effect of Rehmanniae Radix and Pear Phenolic Compound on the STZ-Treated Mice for Induction of Diabetes

생지황(Rehmanniae Radix)과 배의 Phenolic Compound가 Streptozotocin으로 유발된 고혈당 생쥐에 미치는 영향

  • Published : 2004.01.01

Abstract

This study has been carried out to investigate effect of Rehmanniae Radix (RR) and pear phenolic compound (PC) on the hyperglycemic mice induced with streptozotocin (STZ). For this purpose, male mice were fed with a 0.2 mL RR extract (S group) and the pear PC (90 mg/kg/day) dissolved in a 0.2 mL RR extract (SPC group) while the control group received the same commercial diet for 6 weeks. The blood glucose contents were examined from tail vein blood once a week for 6 weeks. Samples of pancreas removed after the experimental period were processed for the immunohistochemical identification of $\beta$-cells. The levels of serum glucose were decreased significalntly (p<0.05) in the S and SPC groups compared with the control group. The BUN and creatinine levels were significantly (p<0.05) decreased in SPC group compared with the control group. Intraperitoneal glucose tolerance tests peformed at 24 hours before that period revealed that glucose tolerances in S and SPC group were ameliorated. Immunohistochemical analyses of the pancreases revealed that a lot of insulin- positive $\beta$-cells were contained in a Langerhas's islets of S and SPC groups compared with the control group, and the number of Langerhas's islets were significalntly increased in S (p<0.01) and SPC (p<0.05) groups. These results suggest that RR extract and pear PC could recover the damages induced by STZ in the hyperglycemic mice.

선행연구에서 배의 과피에서 추출한 phenolic compound(PC)의 항당뇨 효능이 입증되었기에, 본 연구에서는 생지황 추출물과 배의 과피에서 추출한 PC가 streptozotocin(STZ)로 유발된 고혈당 생쥐에 미치는 영향을 규명하고자 하였다. 0.2 mL의 생지황 추출물을 사료에 혼합하여 공급한 실험군(S군), 0.2 mL 생지황과 PC(90 mg/kg/day)를 혼합하여 공급한 실험군(SPC군) 및 사료만 공급한 대조군으로 구분하여 6주 동안 실시하였다. 체중 계측은 매주 1회, 혈당검사는 꼬리정맥 혈을 취하여 매주 1회씩, 당내성 검사는 실험이 완료되기 24시간 전에 각각 실시하였다. 6주 후 BUN과 creatinine을 검사하기 위하여 심장채혈을 하였으며, 관류고정 후 췌장을 적출하여 $\beta$-세포에 대한 insulin-면역조직화학적 검사를 실시하였다. 체중은 S군이 가장 높았으며, 대조군에 비하여 약 2 g 정도 많았다. 혈당은 S군과 SPC군에서 대조군에 비하여 유의성있게 (p<0.05) 감소하였으며, BUN과 creatinine농도는 SPC군에서 대조군에 비하여 유의성있게 (p<0.05) 감소하였다. 당내성 검사결과 S군과 SPC군은 대조군에 비하여 개선된 결과를 보여주었다. 랑겔한스섬의 $\beta$-세포에 대한 insulin-면역조직 화학적 검사 결과 insulin 양성 반응을 보이는 랑겔한스섬들의 수가 S군(p< 0.01)과 SPC군(p<0.05)에서 대조군에 비하여 유의성있게 증가하였으며, 면역반응성은 SPC군에서 가장 높게 나타났다. 이상의 결과로 보아 생지황의 추출물과 배의 과피에서 추출한 PC가 STZ로 유발된 고혈당 생쥐에서 항당뇨 효능이 있다고 사료되며, SPC군이 S군에 비하여 신장의 기능이 보다 양호하게 나타나는 것으로 보아 배의 과피에서 추출한 PC가 당뇨병신증으로부터 보호하는 작용이 있는 것으로 사료되나 기전에 대해서 앞으로 연구가 필요하다고 생각된다.

Keywords

References

  1. Ellenberg & Rifkin's diabetes mellitus(6th ed.) Daniel,P.Jr.;Robert,S.S.;Alian,B.
  2. Cell v.85 Insulin-dependent diabetes mellitus Tisch,R.;McDevitt,H. https://doi.org/10.1016/S0092-8674(00)81106-X
  3. Diabetes v.40 β-cells in type Ⅱ Diabetes mellitus. Porte,D.Jr. https://doi.org/10.2337/diabetes.40.2.166
  4. Diabetes Rev v.4 Determination of pancreatic islet cell mass: a balance between neogenesis and senescene/apoptosis. Vinik,A.;Pittenger,G.;Rafaeloff,R.;Rosenberg,L.;Duguid,W.
  5. Science v.193 Streptozoticin-induced pancreatic insulitis: New model of diabetes mellitus. Like,A.A.;Rossini,A.A. https://doi.org/10.1126/science.180605
  6. Diabetes v.44 Evolution of β-cells dysfunction in the male Zucker diabetic fatty rat. Tokuyama,Y.;Sturis,J.;DePaoli,A.M.;Takeda,J.;Stoffel,M.;Tang,J.;Sun,X.;Polonsky,K.S.;Bell,G.I. https://doi.org/10.2337/diabetes.44.12.1447
  7. Diabetes v.47 Role of apoptosis in failure of β-cells mass compensation for insulin resistance and β-cells defects in the male Zucker diabetic fatty rat. Pick,A.;Clark,J.;Kubstrup,C.;Levisetti,M.;Pugh,W.;Bonner-Weir S.;Polonsky,K.S. https://doi.org/10.2337/diabetes.47.3.358
  8. J Clin Invest v.90 Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. Robertson,R.P.;Zhang,H.J.;Pyzdrowski,K.L.;Walseth,T.F. https://doi.org/10.1172/JCI115865
  9. Mol Endocrinol v.9 The reduction of insulin gene transcription in HIT-T15β cells chronically exposed to high glucose concentration is associated with loss of RIPE3bl and STE-1 transcription factor expression. Sharma,A.;Olson,L.K.;Robertson,R.P.;Stein,R. https://doi.org/10.1210/me.9.9.1127
  10. Diabetes v.45 Hepatic glucose production is regulated both by direct hepatic effects of insulin in humans. Lewis,G.F.;Zinman,B.;Groenewoud,Y.;Vranic,M.;Giacca,A.
  11. Tissue Cell v.24 Receptor-mediated endocytosis of insulin by culture endothelial cells. Roberts,R.L.;Sandra,A. https://doi.org/10.1016/0040-8166(92)90031-2
  12. J Mol Endocrinol v.24 Islet growth and development in the adult. Booner-Weir S. https://doi.org/10.1677/jme.0.0240297
  13. J Korean Soc Food Sci Nutr v.31 Effects of pear phenolic compund on the STZ-treated mice for induction of diabetes. Kim,J.S.;Na,C.S. https://doi.org/10.1677/jme.0.0240297
  14. 본초학(초판) 한국생약학교수협의회 https://doi.org/10.3746/jkfn.2002.31.6.1107
  15. Vet Clin North Am Small Anim Pract v.25 Long-term complications of diabetes mellitus, part 1: retinopathy, nephropathy, neuropathy. Munaka,K.R. https://doi.org/10.1016/S0195-5616(95)50064-6
  16. Semin Vet Med Surg (Small Anim) v.12 Complication and concurrent disease association with diabetes mellitus. Nicholas,R. https://doi.org/10.1016/S1096-2867(97)80019-9
  17. Clin Exp Hypertens v.23 Effect of chronic treatment with losartan on streptozotocin induced diabetic nephropathy. Murali,B.;Goyal,R.K. https://doi.org/10.1081/CEH-100106822
  18. Chronic complications of diabetes Pickup,J.C.;Williams,G. https://doi.org/10.1081/CEH-100106822
  19. Nat Med v.6 Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Ramiya,V.K. https://doi.org/10.1038/73128
  20. Diabetes v.32 Effects of aging on the regenerative capacity of the pancreatic β-cell of the rat. Swenne,I. https://doi.org/10.2337/diabetes.32.1.14

Cited by

  1. Hypoglycemic Effects of a Medicinal Herb Mixture Prepared through the Traditional Antidiabetic Prescription vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.923
  2. Effects of Pear Extracts Containing Herbal Medicine (Lycii Fructus, Coicis Semen, Alimatis Rhizoma, and Astragali Radix) on Body Weight, Lipid Metabolism, and Immune Responses of Rats Fed with High Fat Diets ( I ) vol.27, pp.3, 2012, https://doi.org/10.6116/kjh.2012.27.3.7
  3. Antioxidative Activity of a Medicinal Herb Mixture Prepared through the Traditional Antidiabetic Prescription vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.916
  4. Bio-active Substances and Physiological Activity of Pears vol.56, pp.2, 2013, https://doi.org/10.3839/jabc.2013.014
  5. Sensory Evaluation of Seasoned Soy Sauce with Hutgae (Hovenia dulcis Thunb) Fruit and Pear Extracts vol.26, pp.2, 2013, https://doi.org/10.9799/ksfan.2013.26.2.323
  6. Effects of pear ethanol extract on asthma induced by ovalbumin in mice vol.27, pp.1, 2012, https://doi.org/10.6116/kjh.2012.27.1.11
  7. Effect of pear extracts containing herbal medicine(Lycii Fructus, Coicis Semen, Alimatis Rhizoma and Astragali Radix) on body weight, lipid metabolism and immune responses in rats fed high fat diets (II) vol.27, pp.5, 2012, https://doi.org/10.6116/kjh.2012.27.5.1
  8. A Case Report of Precocious Puberty in a Female Patient : Significant Improvement in Controlling the Sex Hormone Levels vol.28, pp.4, 2014, https://doi.org/10.7778/jpkm.2014.28.4.064
  9. Effects of combination pear extract with Daekumeumjagami medication on hepatic injury induced by alcohol in mice vol.30, pp.1, 2015, https://doi.org/10.6116/kjh.2015.30.1.51.
  10. Rehmanniae Radix, an Effective Treatment for Patients with Various Inflammatory and Metabolic Diseases: Results from a Review of Korean Publications vol.20, pp.2, 2004, https://doi.org/10.3831/kpi.2017.20.010