Simulation-Based Dynamic Programming

최신 제어기법에의 기술 동향 고찰

  • 김동규 (고려대학교 화공생명공학과) ;
  • 이광순 (서강대학교 화공생명공학과) ;
  • 양대륙 (고려대학교 화공생명공학과)
  • Published : 2004.01.01

Abstract

Keywords

References

  1. Proceedings of the joint automatic control conference Dynamic matrix control-a computer algorithm Cutler,C.R.;Ramaker,B.L.
  2. Automatica v.25 no.3 Model preditive control: Theory and practice-a survey Garcia,C.E.;Prett,D.M.;Morari,M.
  3. Control Engineering Practice v.11 A survey of industrial model predictive control technology S. Joe Qin;Thomas A. Badgwell
  4. Dynamic Programming R.E.Bellman
  5. Dynamic Programming White,D.J.
  6. The Art and Theory of Dynamic Programming Dreyfus,S.E.;Law,A.M.
  7. Optimization over Time v.1 Whittle,P.
  8. Optimization over Time v.2 Whittle,P.
  9. Introduction to Stochastic Dynamic Programming Ross,S.
  10. Neuro-Dynamic Programming Dimitri P. Bertsekas;John N. Tsitsiklis
  11. Proc. Of the IRE v.49 no.1 Steps Toward Artificial Intelligence m.Minsky
  12. International Journal of Man-Machine Studies v.1 Alearning machine with monologue Andreae,J.H.
  13. Encyclopedia of Information, Linguistics, and Control Learnign machines-a unified view Andreae,J.H.;Meetham,A.R.(ed.);Hudson,R.A.(ed.)
  14. General Systems Yearbook v.22 Advanced forecasting methods for global crisis warning and models of intelligence Werbos,P.J.
  15. Ph.D.thesis, Cambridge University Learning from Delayed Rewards Watkins,C.J.C.H.
  16. Int. J. Robust Nonlinear Control. Simulation based strategy for nonlinear optimal control: Application to a microbial cell reactor Niket S. Kaisare;Jong Min Lee;Jay H. Lee
  17. ICCAS 2003 in Gyeongju v.629 Control of pH Neutralization Process using Simulation Based Dynamic Programming Dong Kyu Kim;Dae Ryook Yang
  18. AIChE 2003 annual meeting in San Francisco v.438c Simulation Based Dynamic Programming Strategy for Improvement of Control Policies Jong Min Lee;Niket S. Kaisare;Jay H. Lee
  19. AIChE 2003 annual meeting in San Francisco v.434f Simulation Based Dynamic Programming for Process Control, Optimization and Scheduling Jay H. Lee
  20. Reinforcement Learning Sutton,R.S.;Barto,A.G.
  21. Master Thesis. Korea University Experimental Parameter Identification and Control of pH Neutralization Process Based on an Extended Kalman Filter Ahrim Yoo
  22. AIChE 2003 annual meeting in San Francisco v.433e Control of pH Neutralization Process Using Neuro Dynamic Programming Dong Kyu Kim;Kwang Soon Lee;Dae R. Yang
  23. Biotechnology and Bioengineering v.28 Investigation of bacterial growth on mixed substrates: Experimental evaluation of cybemetic models D.S.Kompala;D.Ramkrishna;N.B.Jansen;G.t.Tsao
  24. Machine Learning v.8 Practical issues in temporal difference learning Tesauro,G.J.
  25. Neural Computation v.6 no.2 TD-gammon, a self-teaching backgammon program. achieves master-level play Tesauro,G.J.
  26. Communications of the ACM v.38 Temporal difference learning and TD-Gammon Tesauro,G.J.
  27. Proceedings of the 1994 IEEE Conference on Robotics and Automation Swing up control of the acrobat Spong,M.W.
  28. Advances in Neural Information Processing Systems: Proceedings of the 1995 Conference Improving elevator performance using reinforcement learning Grites,R.H.;Barto,A.G.;D.S.Touretzky(ed.);M.C.Mozer(ed.);M.E.H.(ed.)