References
- P. Geladi and B. R. Kowalski. 'Partial least-squares re-gression: a tutorial', Anal. Chim. Acta., vol. 195, pp. 1-17, 1986 https://doi.org/10.1016/S0003-2670(00)85646-9
- W. Xun, U. Kruger, B. Lennox, and P. Goulding, 'A novel multiblock method using latent vciable partial least squares', Proc. Conf. on American Control, vol. 4, pp. 3136-3141, 2001
- U. Kruger, X. Wang, Q. Chen, and S. J. Qin, 'An alternative PLS algorithm for the monitoring of industrial process', Proc. Conf. on American Control, vol. 6, pp. 4455-4459, 2001 https://doi.org/10.1109/ACC.2001.945680
- M. J. Huang, H. Ye, and G. Z. Wang 'A new PLS approach with hybrid internal models', Proc. Int. Conf. on Machine Learning and Cybernetics, vol. I, pp. 161-164, 2002 https://doi.org/10.1109/ICMLC.2002.1176730
- Y. S. Kim, B. J. Yum, and M. Kim 'A hybrid model of partial least squares and artificial neural network for analyzing process monitoring data', Proc. Int. Joint Conf. on Neural Networks, vol. 3, pp. 2292-2297, 2001 https://doi.org/10.1109/IJCNN.2001.938524
- D. J. H. Wilson and G. W Irwin, 'PLS modeling and fault detection on the Tennessee Eastman benchmark', Proc. Conf. on American Control, vol. 6, pp. 3975-3979, 1999 https://doi.org/10.1109/ACC.1999.786264
- D. J. H. Wilson, G. W Irwin, and G. Lightbody, 'Nonlinear PLS modelling using radial basis functions',Proc. Conf. on American Control, vol. 5, pp. 3275-3276, 1997 https://doi.org/10.1109/ACC.1997.612069
- J. A. Leonard and MA Kramer, 'Radial basis function networks for classifying process faults', IEEE Control Systems Magazine, vol. 11, pp.31-38. 1991 https://doi.org/10.1109/37.75576
- Y. Li and J.-M. Deng, 'WAV-a weight adaptation algorithm for normalized radial basis function networks', Proc. IEEE Int. Conf. on Electronics, Circuits and Systems, vol. 2, pp. 177-120, 1998 https://doi.org/10.1109/ICECS.1998.814845
- F. Heimes and B. Heuveln, 'The normalized radial basis function neural network', Proc. IEEE Int. Conf. On Systems, Man, and Cybernetics, vol. 2, pp. 1609-1614, 1998 https://doi.org/10.1109/ICSMC.1998.728118
- M. D. Brown, GW. Irwin, and G. Lightbody, 'Local model networks for nonlinear internal model control', EURACO workshop on Robust and Adaptive Control of Integrated systems, Munich, Germany, 1996
- R. A. Fisher, 'The use of multiple measurements in taxonomic problems,' Annals of Eugenics, vol. 7, pp. 179-188, 1936 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
- http://www.ics.uci.edu/-mleam/MLRepositoly.html
- P. Lutzt, 'Probenl-a set of neural network benchmark problems and benchmarking rules', Tech. Rep. 21/94, Fakultat fur Informatik, Universitat Karlsruhe, 1994. http://ftp.ira.uka.de/pub/papers/techreports/1994/1994-21.ps.Z