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FUNCTIONS ATTAINING THE SUPREMUM AND
ISOMORPHIC PROPERTIES OF A BANACH SPACE
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Dedicated to the memory of Prof. Klaus Floret.

ABSTRACT. We prove that a Banach space that is convex-transitive
and such that for some element u in the unit sphere, and for every
subspace M containing u, it happens that the subset of norm at-
taining functionals on M is second Baire category in M™ is, in fact,
almost-transitive and superreflexive. We also obtain a characteri-
zation of finite-dimensional spaces in terms of functions that attain
their supremum: a Banach space is finite-dimensional if, for every
equivalent norm, every rank-one operator attains its numerical ra-
dius. Finally, we describe the subset of norm attaining functionals
on a space isomorphic to £;, where the norm is the restriction of
a Luxembourg norm on L;. In fact, the subset of norm attaining
functionals for this norm coincides with the subset of norm attain-
ing functionals for the usual norm.

Introduction

The spirit of this note is to find some relationship between isomorphic
or isometric assumptions of a Banach space and the size of the set of
norm attaining functionals. Along this line, James’ Theorem is remark-
able: a Banach space is reflexive as soon as the set of norm attaining
functionals becomes the topological dual space [16]. If the Banach space
satisfies the Radon-Nikodym property, then the set of norm attaining
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functionals contains a Gs-dense set (see [12], [25], [26]). On the other
extreme, if the unit ball of the space X is not dentable, a result due to
Bourgain and Stegall states that the set of norm attaining functionals is
of the first Baire category in the case that X is separable ([13, Problem
3.5.6]). In the general case, it is not known if the same result holds.
However, for any compact and Hausdorff topological space K, the set of
norm attaining functionals on C(K) is first Baire category in the dual
(norm topology) (see [18, Theorem 4]).

We are not going to consider in the dual space any topologies other
than the norm topology. However, there are interesting results for the
w*-topology or the weak topology in the dual (see for instance [22], [15,
Lemma 11] and [17, Proposition 3.2]). A survey of some of the previous
results can be found in [3].

In the following, we will denote by N A(X) the set of norm attaining
functionals on a Banach space X, that is,

NAX)={s" € X" :Jw € X, ||z]| = 1,2"(2) = ||="||},

where X* is the topological dual of X.

Before stating the new results, we will mention that any Banach space
X can be renormed in such a way that N A(X) has non empty interior [4,
Corollary 2]. Under some special assumptions of smoothness, if NA(X)
has non empty interior, then the space X has to be reflexive. For in-
stance, this happens for Banach spaces with a Hahn-Banach smooth
norm [5] or for spaces having the Mazur intersection property [17]. In
[2] the authors proved that a Banach space X is reflexive if it does not
contain an isomorphic copy of £ and for some r > 0, it holds that the
dual unit ball Bx+ is the w*-closure of the set

{z* € X"+ |z*| = 1,2" + rBx- C NA(X)}.

It is also known that a Banach space whose dual unit ball can be gen-
erated as above is reflexive if the norm is not rough (see [2, Proposition
5]). As a consequence of previous results, spaces having a lot of isome-
tries (convex-transitive) and such that NA(X) has non empty interior
are superreflexive, given that they do not contain isomorphic copies of
4.

In Section 1 we will prove that a certain abundance of norm attaining
functionals and isometries on X will imply that the space is superreflex-
ive.

We consider some other functions instead of functionals in the second
section. Acosta and Ruiz Galdn proved in [6] that a Banach space such
that every rank one operator attains its numerical radius has to be
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reflexive. On the other hand, they showed that every infinite dimensional
Banach space with a Schauder basis admits an equivalent norm for which
some rank one operator does not attain its numerical radius. Here we
extend this result to the general case.

In the last section we describe the subset of norm attaining functionals
of a space isomorphic to #; with a norm coming from an Orlicz norm on
L,, and we pose some open problems that arise naturally.

Section 1

The result appearing in the first section is motivated by two facts.
The first of them is that spaces which are convex transitive (see definition
below) are either superreflexive, or the space and the dual are rough
[8, Theorem 3.2]. On the other hand, the transpose of any surjective
isometry preserves the subset NA(X) and so, by assuming that N A(X)
has non empty interior, the isometries will provide a lot of norm attaining
functionals if the space is convex-transitive. Under these assumptions
we can expect reflexivity, and by using the first result we mentioned, we
actually get superreflexivity.

The presence of points with special properties in the interior of N A(X)
will force reflexivity. In order to be more precise, we recall some defini-
tions.

DEFINITION 1. A point u in Sx (the unit sphere of X) is a big point

if
Bx=c ( |J Tu),
Teg(X)

where G(X) denotes the set of all surjective linear isometries on X.

If all the points in the unit sphere of X are big, the space is convez-
transitive (see [24, §9]). X is almost-transitive if Ureg x)(Tw) = Sx for
any element « in the unit sphere of X.

For instance, the space L1[0,1] is almost-transitive [24, Theorem
9.6.4]. Loo[0,1] and the Calkin algebra are convex-transitive [9, Corol-
lary 4.6].

Up to this point, we know that a certain abundance of norm attaining
functionals and some other condition imply reflexivity. For instance, a
separable convex-transitive Banach space X, satisfying that NA(X) is
second Baire category, is in fact, superreflexive [2, Proposition 7]. We
arrived at the same assertion for a convex-transitive Banach space not
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containing a copy of £; and such that NA(X) has non empty interior
(2, Proposition 8.

We do not know any non superreflexive Banach space X that is
convex-transitive and such that N A(X) has non empty interior. That is
why we asked in [2, Open problem 9] whether or not superreflexivity is
satisfied if X is convex-transitive and the set of norm attaining function-
als on X has non empty interior. We will use a localization argument
to give a new partial answer to the previous problem. For this purpose,
some topological property of the set of big points will be needed.

LEMMA 2. Let X be a Banach space, then the set of big points is
closed.

Proof. Let B C Sx be the subset of big points and y € B. If we fix
z € Bx,e > 0, there is b € B satisfying ||y — b|| < €. Since b is a big
point, there are elements 71, ...,T, € G(X) so that

n
x - Zcﬂ}(b)“ <,
i=1
where ¢; > 0 for all 7 and Y ;. ; ¢; = 1. Hence, we have
n n
=Y T + | ali(b- y)”
i=1 i=1

n
z— ZCiTi(y)
i=1
n
<e+y clTil lIb-yl < 2.

=1

+

<

Since z is any element in the unit ball and ¢ any positive real number,
1y is a big point, as we wanted to prove. 0

PROPOSITION 3. Let X be a convex-transitive Banach space. For
any separable linear subspace M C X, there is a linear space M C X,
which is closed, separable, convex-transitive and contains M.

Proof. We use a similar argument to the one appearing in [14, The-
orem 1.2]. We will construct an increasing sequence of separable sub-
spaces of X whose union will be dense in the desired subspace M.

To begin with, we will take Y73 = M. Let us consider a countable
subset D1 C Sy, which is dense in the unit sphere. Since X is convex-
transitive and M is separable, there is a countable subgroup G; C G(X)
so that

zeco{Ty:T € G}, Vz,y € D;.
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Now, let Y5 be given by

v~ U 709))
TeG
Hence, Y5 is a closed linear subspace of X, which is separable and con-
tains Y1. Now, we will repeat the procedure by considering a countable
subset Dy C Sy, that is dense in Sy, and contains D;. Since X is convex-
transitive, we can find a countable subgroup Ga C G(X) containing Gy
so that
zeco{Ty:T € Gy}, Vz,y € Ds.

In this manner, we will inductively construct sequences {Y,}, {D,},
{Gr} such that

i) Y, is a separable linear subspace of X, for each n.
i) MCY,CVYyt1, Vn
ili) Dy, is a countable dense subset of Sy, and D, C Dy41,Yn.
iv) Gy is a countable subgroup of G(X) and G,, C G,1 for each n.
v) T(Yy) CYnt1, YT € G,
vi) D, CCo{T2:T € Gn}, Vz€ D,.
We will take M = U, Y,,, which is clearly a separable closed subspace of
X and contains M by i) and ii). In order to check that M is convex-
transitive, we will show that every element in the set D = U,D,, C M
is a big point of M.
First, M is G-invariant, since for any T € G,, by using ii) and v), we
have

T(M) = T(UanYn) C U T(Y,) C M.

Since Gy, is a subgroup of G(X) and T-1(M) C M, Ty is & surjective

isometry on M.
For any z,y € D, condition iii) gives us that z,y € D, (some n).
Therefore, by using vi),

yeewo{Te:T € G,y Cc{Tz: T cG}.
Since D is dense in Sy, then By; C o G(z). By Lemma 2 and the dense-
ness of D in Sjy; (condition iii)), it follows that By = (Upea T(2))
for any x € Sy, so M is convex-transitive. a
DEFINITION 4. A Banach space X has property HNA(X) if there
is u € Sx such that NA(M) is second Baire category (in the norm

topology of M*) for any closed, separable and linear subspace M C X
containing u.
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Property HN A(X) is not restrictive at all from an isomorphic point of
view. Every Banach space can be renormed to have HN A [4, Proposition
1]. It is easily checked that, for instance, ¢; has this property for u = e;.

THEOREM 5. Let X be a convex-transitive Banach space satisfying
property HNA(X). Then X is almost-transitive and superreflexive.

Proof. Let N C X be a closed and separable linear space of X. If
u € Sx is the element in X such that NA(M) is second Baire category
in M* for any closed and separable subspace M containing u, we use as
M the linear span of v and N, M = Lin{u, N}.

By using Proposition 3, there is a separable, closed and convex-
transitive subspace M C X containing M, so NA(M) is second Baire
category. By using the result by Bourgain-Stegall [13, Theorem 3.5.5
and Problem 3.5.6], Bj; is dentable. Since M is also convex-transitive,
by using [8, Theorem 3.2], it follows that M is superreflexive, so N is
also superreflexive.

Since superreflexivity is separably determined, then X is superreflex-
ive, and by using [8, Corollary 3.3|, we get that X is indeed almost-
transitive. O

COROLLARY 6. If X is a convex-transitive Banach space which is not
Asplund, then for every u in the unit sphere, there is a separable and
convex-transitive closed subspace M containing u such that NA(M) is
first Baire category and so NA(M) has empty interior in M*.

Section 2

In this section we pay attention to the parallel version of James’
Theorem for numerical radius. In order to be more precise, let us recall
that the numerical radius of an operator T' € L(X) (bounded and linear
operators on X) is the real number v(T") given by

v(T) := sup{|z*Tz| : (z,2*) € II(X)},

where II(X) := {(x,z*) € Sx x Sx» : 2*(z) = 1} (Sx is the unit sphere
of X). We say that such an operator T attains the numerical radius if
for some (zg,z}) € II(X) it holds that

[zo(Tzo)| = v(T).

A good survey of results on numerical radius can be found in the mono-
graphs [10, 11].
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James’ Theorem can be stated as follows: a Banach space is reflexive
if, and only if, every rank-one operator on it attains the norm. In [6] it
is shown that a Banach space is reflexive provided that every rank-one
operator attains the numerical radius. However, the converse does not
hold. In fact, we have obtained the following general renorming result,
previously shown for Banach spaces with a Schauder basis [6, Example]:

THEOREM 7. A Banach space is finite-dimensional if, and only if,
for any equivalent norm, every rank-one operator attains its numerical
radius.

Proof. A simple compactness argument gives us one implication.
Thus, we just have to prove that an infinite-dimensional Banach space
X admits an equivalent norm for which some rank-one operator does
not attain the numerical radius. In view of [6, Theorem] we can assume
X to be reflexive. Otherwise, the original norm satisfies the desired
condition.

Proof of the separable case. If X is separable and infinite-dimensio-
nal, we can find a positive number K > 0 and a biorthogonal system
{(en,€};)} in Sx X K Bx~ such that the space generated by {e,, : n € N} is
(norm) dense in X and the subset {e}, : n € N} separates the elements in
X (see [20] or [21]). We will use a similar argument to the one appearing
in [6, Example]. Let us consider the following subset of X:

|
A :={:c €X: E -—j-|€:l(.’l,‘)|2 < 1},
n=1 €n

where {e,} is a fixed sequence in ¢; satisfying
€1 =1, 0 <epq1 < &q, Vn € N.

Because of {e,} € ¢; and the fact that the set {e}} separates the points
in X, it holds that

x = Z e (r)en, Vze A
n=1

It is also clear that the set A is (norm) compact. Now let us consider
the subset B given by

1
Bzco{%Bx Um{eg,eg-i—en:nZ?»}UA},

which is the unit ball of an equivalent norm || - || on X (aco is the
absolutely convex hull). Let Y be the space X endowed with the new
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norm. Then its dual norm is given by

']
1 * * * * *
- max{ﬁly el mag v () + e (0]

1
2

= max { oyl Iy (ea)l, maxly(e2) + o7 (en)| (Zenly n) ) ,

for any y* € Y*, where we denote by | - | the original norm in X. Now
we take the elements

20=¢€1, Tg =€, Tn=¢€2+e, (n>3).

We finish the proof in the separable case by checking that 2y, x, € By,
zg € Sy and also the following four conditions:

i) {llan + 20/} — 2,

ii) zp is a point of smoothness of the norm and the unique functional
25 € Sy~ such that z3(2p) = 1 is also a point of smoothness (of
the dual norm),

i) {z,} = o,

iv) 29 ¢ Kxg.

The previous assumptions imply that the operator xj®zg does not attain
its numerical radius, where z§ € Sy~ is any support functional of the
unit ball at zo (see [6, Proposition 2]).

Now we will check the previous four conditions. We know by the
definition of B that 2¢,zg,z, € By (n > 3) and, in fact, ||zo| =
because e5(zo) = 1 and ||e}|| = 1. Conditions iii) and iv) also hold since
{e} : n € N} generates a w*-dense subspace of X*, and, since X is
reflexive, it is a dense subspace of X*. In order to check condition i) we
simply consider the functionals

zy = (l—en)el +€, (n>3),
then ||z || <1 and

{zy(zn+20)} ={2—e,} — 2.
But 2 — e, < ||lzn + 20| £2, s0

{llzn + 20]} — 2.
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Finally, we check condition ii). If 25 € Sy~ satisfies z§(z0) = z§(e1) = 1,
then

oo 0o
1=|251* 2> ealzglen))® = g (en) P+ D e2lzg (en)]?,
n=1 n=2

so z5(en) = 0 for n > 2. The linear span of {e, : n € N} is dense in
X and the previous condition therefore implies that 2§ = e] and z is a
point of smoothness. On the other hand, we have

1
lel(z)| <1, Vze ﬁBx Uaco{es, e2 + €ntn>3,

and so e] attains its norm only at elements in A. If a € A is such an
element, then ej(a) = 1, and the fact that - ; ;‘%le;(a)l'? <1l(ea1=1)
gives us ey (a) = 0 for n > 2. But the set of functionals {e}, : n € N}
separates the points of X, so a = e; = 2z, and zj is also smooth.

Extension to the general case. Assume now that X is reflexive and
infinite-dimensional. Then there exists an infinite-dimensional and sep-
arable complemented subspace Xy of X (see [19, Proposition 1]). In
view of the proof in the separable case, we can assume that there is
an equivalent norm on Xj, satisfying the conditions i) to iv) previously
checked. Hence, there is an element zg € Sx, and a functional z§ € S Xz
such that the rank-one operator zj ® zp € L(Xp) does not attain its
numerical radius.

By renorming X we can assume that we have the decomposition

X=Xo®Y

for some closed subspace Y of X. Since the f3-sum preserves smooth-
ness, one can directly check that the operator zjj ® zy still satisfies the
conditions i) to iv) (as an operator in X') previously checked in the sep-
arable case. Therefore, there is a space isomorphic to X such that the
operator zg ® zg does not attain its numerical radius. O

By considering some classical reflexive spaces, it is known that any
compact operator on £, (1 < p < 00) attains its numerical radius (see (7]
or [1]). In general, one has to renorm in order to get a rank-one operator
not attaining its numerical radius. Not too much is known about the
rest of the spaces, even in the case of L,[0,1]. We pose the following
problem: Can every reflexive space be renormed so that every rank-one
operator on it attains its numerical radius?
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Section 3

An explicit description of the subset of norm attaining functionals is
known just in a few cases. In this section we will consider ¢; embedded
into L; with an appropriate Luxembourg norm and we will describe the
set of norm attaining functionals on #;, endowed with the restriction of
the Luxembourg norm on Lj.

Let us consider the function M : Rf — R given by

t2 if 0<t<l,
M(t)_{ 2t—1 if t> 1.

Then M is an Orlicz function and the Orlicz space Lps[0,1] is given by
the subset of measurable functions f : [0,1] — R such that for some
positive real s it holds that

/OlM(@) dt < +oo.

We will consider this space endowed with the Luxembourg norm, that
is,

(AN =inf{s>0:/01M<M> dt < 1} (f € Luml0,1]).

S

Since the subset {A—/It(i) : t > 0} is bounded above, it is well-known
that the space Lys[0, 1] is isomorphic to L1[0, 1] and, in fact, the identity
is an isomorphism.

Since we can embed ¢; into L1[0,1] in a natural way, from now on
we will take X = #; endowed with the Luxembourg norm on L;. More
precisely, we will fix a sequence {A,} of disjoint measurable subsets of
[0, 1] such that A(4,) = 2, and consider the mapping T': ¢1 — L1[0, 1]
given by

[o ]
T(z) = Zx(n)2nx,4n (x € 4y),
n=1
which is clearly an embedding from ¢, into L;. From now on, the norm
considered on X is given by

Izl := Tzllm (2 € X).

First we will get an expression for the norm on X in terms of the
space.
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LEMMA 8. For any € X it holds that

. n2(n)?
l|x||=mln{320: o2 .

2"|z(n)|<s

I M

27| z(n)|>s 27|z (n)|>s

Proof. By definition of the function M, if we write f = Tz, then

/1M(M) @
= ¥ ((s =+ > ( 1>51;
(z(n)2n)?

lz(n)|2n<s |z(n)|27>s
since for t € A, [z(n)|2" < s = M (Ifgt)l) = o in the case
|lz(n)|2"

that |z(n)|2™ > s, then M(|f(t)|) = 2 — 1 and A(4,) = 3= and
now it suffices to use the definition of the Luxembourg norm of f to get

ol = inf{s o0y 2

2" |a(n)|<s
|lz(n)] 1
—_— — <
+ ) 2 o S1p
27 |z(n)|>s 27 |z(n)|>s

Since M is continuous, by the monotone convergence Theorem, it holds
that for any f € Las[0, 1] the infimum defining || f||ar is actually a maxi-
mum and so, as a consequence, we obtain the announced statement. [

LEMMA 9. The Young conjugate of M is the function ¢ : R(‘)" —
[0, +00] given by

2 jf 0<t<2,

o) ={ 1

+oo If t> 2.

Proof. By definition of the Young conjugate, it is sufficient to com-
pute

o(t) :==sup{zt — M(z) : ¢ > 0}.

In the next result we compute the dual norm of the space X.
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ProprosITION 10. Let X be (41,] - ||). Then, for any z € o, = X*,
z # 0, the dual norm is given by

- (-5

n=1

- 31 i 7).

I2lloo £

Proof. If the two functions M and its Young conjugate ¢ were N-
complementaries the result would be a consequence of a general result,
appearing, for instance, in {23, Theorem 13].

In the following, we will use the identification X* = £,,. Let x be
an element in X satisfying ||z|]] < 1 and 2z € X*\{0}. We will call
f=3>r2(n)2" 4, and g := 37, 2(n)xa4,. Since f is the image
of z under T, ||lz]| £ 1 and M is continuous, we get fo (17D dx < 1.
Then we have, for any k € R*, the following inequality:

o0 1
S 2(n)a(n) = /0 () F (1) dt

- =]1€/ kg(t)F(t) dt < > /k|g D) dt
A (cp(klg(t)l) M) ) a

<i(i+f o(klg®) i)

In the case that the previous expression is finite, that is, if k||z||cc < 2,
then the above expression coincides with

1 2. k?z(n)? 1 . z(n)?
E(IJFZ on+2 >:E+kz an+2 -’
n=1

n=1

INA

Hence, we have proven that

||z|[<0 inf { 2

<k<TET ..
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Now, simple computations show that the above infimum is attained at
the value k = ﬁ; and so, we obtain that

had zn2
FE(E= L8}

I2lloc £

Now we will check that the previous inequality becomes an equality
for the set of norm attaining functionals. For the function M used, the
Luxembourg norm in Ly is smooth (see [27, Lemma 3.3]), and so, we
will show that for any element z € ¢; satisfying that ||z||pr = 1, there is
an element z € Z., such that

1 ; 1 X z(n)?
z(m)—-2<” oo + HZHooZ qn )

n=1

Since the expression on the right hand side is continuous in £, it will
give the dual norm if both norms coincide in the set of norm attaining
functionals, which is a (norm) dense subset of X*, in view of the Bishop-
Phelps Theorem.

For x € X satisfying ||z|| = 1, we define the following element 2z € £,

C( e(n), i le(n)2r <1
#(n) = { ign 2(n), if [a(n)|2" > 1

Because of the choice of z we get

1) al@)=)Y znam) = Y 2%zm)?+ > l|z(n).
n=1 lo(n)j2r<1 lo(n)j2n>1

On the other hand, since ||z|| = 1, then by using Lemma 8, it is sat-
isfied that |z(n)|2™ > 1 for some n and so, ||z||cc = 1. As a consequence,

we have
1 1 X z(n)?
3 (el + > 200
@) 2 l2llo0 = 2
1 5 1
= 5(1 + Z 2"z (n)” + Z —2—n>
lz(n)|2n<1 |z(n)|27>1

By using that ||z|| = 1, from Lemma 8 we know that

1= Z 2":c(n)2+2 Z [z(n)| — Z 2in’

lz(n)|27<1 jz(n)|2n>1 lz(n)|27>1
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and it follows that

2< oo 2?4+ |:v(n)|>

fz(n)|27<1 Jz(n)|2n>1
(3) .
=1+ Z 2%z (n)? + Z o
lz(n)}27<1 |z(n)|27>1

By using (1), the above identity and (2), we get

1 s 1 X z(n)?
z(x)—2<|] oo+ [ 2= 2 )

n=1

O
PROPOSITION 11. The space (¢1, || -||) is smooth, and for any x € Sx,
its normalized support functional is the element z given by
(n) = 2"z (n)M, if lz(n)|2" <1
A\ Msign z(n), if [z(n)|2" > 1,

where
2

= 1 .
L4+ emyzn<t mz(n)? + > ja(n)j2n>1 37

Proof. By using [27, Lemma 3.3], Ly is smooth, and so (¢4, || - ||) is
also smooth. By Proposition 10, the functional z has norm one, since
the subset {n € N: |z(n)| > 1} is not empty (see Lemma 8) and hence

> zZ\n 2
ot = 5 (lehee + 7 3 200

n=1

:%(lez 2"z(n)’+ Y 2%)

(n)|2n<1 Jz{n)|27>1

=1,

where we used that ||z|| = 1.
By using identity (3) of the proof of Proposition 10, we get

oo

2(z) = Y z(n)z(n)
n=1
= Z 2%z (n)2M + Z Mlz(n)|
lz(n)|27<1 |lz(n)|27>1
=1
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THEOREM 12. The set of norm attaining functionals on X has non
empty interior. In fact,

NA(X)=NA() ={z € lo : |2(n)| = ||2||oc (s0me n)}.

Proof. Since the set of norm attaining functionals is a cone, assume
that an element 2z € £, satisfies that ||z]|oc = 1, |2(n)| < 1, for every n,
and z attains the norm at some element z € Sx. By the description of
the duality mapping given in the previous result, then

2Mz(n)| < 1, ¥n €N,

and so

00 00 0 ]
1=lzf = 2"x(mn)? < > |z(n)| < ) 7 =1
n=1 n=1 n=1

Therefore, if 2z € NA(X), then for some coordinate n it holds that

lz(n)| = ||2loo-
Now assume that

{neN:|z(n)| =|zllc =1} # 0.
In the case that
lz(n)| =1, VYn € N,
we will check that z attains its norm. Let us take the element z € X
given by

z(n) = sign z(n)%n, VYn € N.

From the expression of the norm in X (see Lemma 8), it holds that

|z]] =1 and
= 1
z(x) = Z o= 1.
n=1

Since in this case
1 >, 2(n)?
I =3(1+ X250 ) =1,
n=1

then z(z) = 1 = ||z|| = ||2|| and z attains its norm at z.
Assume now that

A= {meN: [z(m)| <1} # 0.
We put
C:=N\A4:= {n eN:|z(n)| = 1},
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and by assumption, C' is not empty. We will define an element z € X
as follows:

(n) = zé:f) ifneA
sign 2(n)& if n € C,
1 — §o0 z(n)?
where r = ——&=m=1 2"
2 ZnGC ZL"

We check that x € By, since

Z 2"x(n)? + 2 Z |z(n)| — Z 2%

|z(n)|27<1 |z(n)|27>1 |z(n)|27>1
2 1 1
=y e Y A L
neA neC neC
o~ 2(n)?
= Z o + 2r Z 3 (by the choice of r)
n=1 neC
oo 2 o0 2
_ \2(n) z(n)
=2 Gt
=1,

neA n neC "
© 2
z(n) 1
SPos
n=1 neC

= |2l,

(having used in the last inequality ||2]|co = 1). We checked that z attains
its norm.
As proven earlier

NA(X) ={z €l : In,|z(n) = ||2||ec} = NA(¢1).
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Therefore, the set of norm attaining functionals has non empty interior
in the dual space (norm topology). O

It is not known whether a Banach space X satisfying that for every
equivalent norm, the subset NA(X) has non empty interior, has to be
reflexive. This problem was posed by I. Namioka during a workshop
held in Murcia (1999).

As proven in [4, Corollary 7], any separable Banach space X that is
not weakly sequentially complete admits an equivalent norm for which
NA(X) has empty interior. Even for the space ¢1, we do not know if
it admits a norm satisfying that the set of norm attaining functionals
has empty interior. In order to arrive at such a norm, it seems to be
reasonable to work with smooth norms. However, we have proven here
that the Luxembourg norm does not work.
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