DOI QR코드

DOI QR Code

Atomistic Study of III-Nitride Nanotubes

3족-질화물 나노튜브의 원자단위 연구

  • 변기량 (중앙대학교 전기전자공학부) ;
  • 강정원 (중앙대학교 전기전자공학부) ;
  • 이준하 (상명대학교 컴퓨터 정보통신공학부) ;
  • 권오근 (세명대학교 인터넷 정보학부) ;
  • 황호정 (중앙대학교 전기전자공학부)
  • Published : 2004.02.01

Abstract

We have investigated the structures, the energetic, and the nanomechanics of the single-wall boron-, aluminum-, and gallium-nitride nanotubes using atomistic simulations based on the Tersoff-type potential. The Tersoff-type potential for the III-nitride materials has effectively described the properties of the III-nitride nanotubes. Nanomechanics of boron-, aluminum-, and gallium-nitride nanotubes under the compression loading has been investigated and their Young's moduli were calculated.

Keywords

References

  1. Crit. Rev. Solid State Mater. Sci. v.27 no.3-4 Carbon Nanostructures O.A.Shenderova;V.V.Zhirnov;D.W.Brenner https://doi.org/10.1080/10408430208500497
  2. Appl. Mech. Rev. v.55 no.6 Mechanics of carbon nanotubes D.Qian;G.J.Wagner;W.K.Liu;M.F.Yu;R.S.Ruoff https://doi.org/10.1115/1.1490129
  3. 전지전자재료학회논문지 v.14 no.10 유도결합형 플라즈마 화학기상 증착법을 이용한 탄소나노튜브의 성장 및 전계방출 특성 연구 김광식;류호진;장건의
  4. 전지전자재료학회논문지 v.15 no.4 플라즈마 화학 기상 증착법에서 DC bias가 인가된 탄소나노튜브의 수직성장과 전계방출 특성 정성희;김광식;장건익;류호진 https://doi.org/10.4313/JKEM.2002.15.4.367
  5. 전지전자재료학회논문지 v.15 no.8 유도결합형 플라즈마 화학기상증착법에서 탄소나노튜브의 수직성장과 전계방출 특성 향상 연구 김광식;류호진;장건익 https://doi.org/10.4313/JKEM.2002.15.8.713
  6. Science v.269 no.2045 Boron nitride nanotubes N.G.Chopra;R.J.Luyken;K.Cherrey;V.H.Crespi;M.L.Cohen;S.G.Louie;A.Zettl https://doi.org/10.1126/science.269.5226.966
  7. Phys. Rev. Lett. v.76 no.25 Boron nitride nanotubes with reduced numbers of layers synthesized by are discharge A.Loiseau;F.Willaime;N.Demoncy;G.Hug;H.Pascard https://doi.org/10.1103/PhysRevLett.76.4737
  8. Chem. Phys. Lett. v.257 no.5 Pyrolytically grown BxCyNz nanomaterials:nanofibres and nanotubes M.Terrones;A.M.Benito;C.Manteca-Diego;W.K.Hsu;O.I.Osman;J.P.Hare;D.G.Reid;H.Terrones;A.K.Cheetham;K.Prasides;H.W.Kroto;D.R.M.Walton https://doi.org/10.1016/0009-2614(96)00594-5
  9. Science v.278 no.5338 Synthesis of Nanoparticles and Nanotubes with Well-separated Layers of Boron Nitride and Carbon K.Suenaga;C.Colliex;N.Demoncy;A.Loiseau;H.Pascard;F.Willaime https://doi.org/10.1126/science.278.5338.653
  10. Angew. Chem. Int. Ed. v.41 no.14 Oxidic Nanotubes and Nanorods Anisotropic Modules for a Future Nanotechnology G.R.Patzke;F.Krumeich;R.Nesper https://doi.org/10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
  11. Nature v.395 no.6700 Cage structures and nanotubes of NiCl₂ Y.R.Hacohen;E.Grunbaum;R.Tenne;J.Sloand;J.L.Hutchinson https://doi.org/10.1038/26380
  12. Adv. Mater. v.14 no.15 Vapor-Liquid-Solid(VLS) growth of NiCl₂nanotubes via reactive gas laser ablation Y.R.Hacohen;R.Popovitz-Biro;E.Grunbaum;Y.Prior;R.Tenne https://doi.org/10.1002/1521-4095(20020805)14:15<1075::AID-ADMA1075>3.0.CO;2-H
  13. Adv. Mater. v.14 no.17 Trititanate nanotubes made via a single alkali treatment Q.Chen;W.Zhou;G.Du;L.M.Peng https://doi.org/10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO;2-0
  14. Appl. Phys. Lett. v.82 no.4 Photoluminescence from surfactantassembled Y₂O₃:Eu nanotubes C.Wu;W.Qin;G.Qin;D.Zhao;J.Zhang;S.Huang;S.Lu;H.Liu;H.Lin https://doi.org/10.1063/1.1542685
  15. Adv. Mater. v.14 no.4 Rare earth(Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies M.Yada;M.Mihara;S.Mouri;M.Kuroki;T.Kijima https://doi.org/10.1002/1521-4095(20020219)14:4<309::AID-ADMA309>3.0.CO;2-Q
  16. Phys. Rev. B v.60 no.11 Stability and electronic structure of GaN nanotubes from density-functional calculations S.M.Lee;Y.H.Lee;Y.G.Hwang;J.Elsner;D.Porezag;Th.Frauenheim https://doi.org/10.1103/PhysRevB.60.7788
  17. Phys. Rev. B v.58 no.8 Theoretical study of the structural and electronic properties of GaSe nanotubes M.Cote;M.L.Cohen;D.J.Chadi https://doi.org/10.1103/PhysRevB.58.R4277
  18. Phys. Lett. v.318 no.4;5 Theoretical prediction of phosphorus nanotubes G.Seifert;E.Hernandez
  19. J.Korean Phys. Soc. v.42 no.2 Atomistic Study of Double-Wall Copper Nanotubes J.W.Kang;H.J.Hwang
  20. Nanotechnology v.13 no.6 Bismuth nanotubes:potential semiconducting nanomaterials C.Su;H.T.Liu;J.M.Li https://doi.org/10.1088/0957-4484/13/6/310
  21. Phys. Rev. Lett. v.89 no.28 Theory of B₂O and BeB₂Nanotubes: New Semiconductors and Metals in One Dimension P.Zhang;V.H.Crespi https://doi.org/10.1103/PhysRevLett.89.056403
  22. Phys. Rev. B v.49 no.7 Theory of graphitic boron nitride nanotubes A.Rubio;J.L.Corkill;M.L.Cohen https://doi.org/10.1103/PhysRevLett.89.056403
  23. Nature v.422 no.6932 Single-crystal gallium nitride nanotubes J.Goldberger;R.He;Y.Zhang;S.Lee;H.Yan;H.J.Choi;P.Yang https://doi.org/10.1103/PhysRevB.49.5081
  24. Phys. Lett. v.371 no.3;4 Theoretical prediction on aluminum nitride nanotubes D.Zhang;R.Q.Zhang https://doi.org/10.1038/nature01551
  25. Phys. Rev. B v.37 no.12 New empirical approach for the structure and energy of covalent systems J.Tersoff
  26. Phys. Rev. B v.38 no.14 Empirical interatomic potential for silicon with improved elastic properties J.Tersoff https://doi.org/10.1103/PhysRevB.37.6991
  27. Phys. Rev. B v.39 no.8 Modeling solid-state chemistry:Interatomic potentials for multicomponent systems J.Tersoff https://doi.org/10.1103/PhysRevB.38.9902
  28. J. Crystal Growh v.209 no.2;3 Molecular dynamics simulation of Ⅲ-Ⅴ compound semiconductor growth with MBE M.Nakamura;H.Fujioka;K.Ono;M.Takeuchi;T.Mitsui;M.Oshima https://doi.org/10.1103/PhysRevB.39.5566
  29. Phys. Rev. B v.58 no.8 Empirical bond-order potential for semiconductors D.Conrad;K.Scheerschmidt https://doi.org/10.1016/S0022-0248(99)00546-1
  30. Physica A v.311 no.1;2 A modifide Tersoff potential for the study of finite temperature properties of BP F.El-Mellouhi;W.Sekkal;A.Zaoui https://doi.org/10.1103/PhysRevB.58.4538
  31. J. Am. Ceram. Soc. v.84 no.10 Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron K.Matsunaga;Y.Iwamoto https://doi.org/10.1016/S0378-4371(02)00780-X
  32. Phys. Rev. B v.65 no.19 Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon K.Albe;K.Nodlund;R.S.Averback https://doi.org/10.1111/j.1151-2916.2001.tb00990.x
  33. Comp. Mater. Sci. v.25 no.3 Optimization of interatomic potential for Si/SiO₂system based on force matching Y.Umeno;T.Kitamura;K.Date;M.Hayashi;T.Iwasaki https://doi.org/10.1103/PhysRevB.65.195124
  34. Surf. Coat. Technol. v.116-119 Experimental temperature growth of chromia and alumina D.E.Ashenford;F.Long;W.E.Hagston;B.Lunn;A.Matthews https://doi.org/10.1016/S0927-0256(02)00322-1
  35. Surf. Sci. v.458 no.1-3 Fundamental processes of microcrystalline silicon film growth: a molecular dynamics study T.Ohira;O.Ukai;M.Noda https://doi.org/10.1016/S0257-8972(99)00181-4
  36. Superlattices and Microstructures v.28 no.1 The miscibility of Cu$_X$Ag$_{1-X}$I using a Tersoff potential W.Sekkal;A.Laref;H.Aourag;A.Zaoui;M.Certier https://doi.org/10.1016/S0039-6028(00)00447-7
  37. J. Phys. Chem. Solids v.59 no.8 Molecular dynamics simulation of high pressure phases of CuCl and CuBr W.Sekkal;H.Aourag;M.Certier https://doi.org/10.1006/spmi.1999.0782
  38. Mol. Sim. v.29 no.3 Elastic Properties of Zinc-blende GaN, AIN and InN from Molecular Dynamics F.Benkabou;M.Certier;H.Aourag https://doi.org/10.1016/S0022-3697(98)00038-9
  39. Nucl. Instrum. Meth. B v.203 Molecular dynamics study of defect formation in GaN cascades J.Nord;K.Nordlund;J.Keinonen;K.Albe https://doi.org/10.1080/0892702021000049673
  40. Comp. Mater. Sci. v.10 no.1-4 Modelling of boron nitride: Atomic scale simulations on thin film growth K.Albe;W.Moller https://doi.org/10.1016/S0927-0256(97)00172-9
  41. Phys. Rev. Lett. v.80 no.20 Elastic Properties of C and BxCyNz Composite Nanotubes E.Hernandez;C.Goze;P.Bernier;A.Rubio https://doi.org/10.1016/S0927-0256(97)00172-9
  42. Comp. Mater. Sci. v.23 no.1-4 Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage L.G.Zhou;S.Q.Shi https://doi.org/10.1103/PhysRevLett.80.4502
  43. Phys. Rev. B. v.65 no.15 Atomistic simulations of nanotube fracture T.Belytschko;S.P.Xiao;G.C.Schatz;R.S.Ruoff https://doi.org/10.1016/S0927-0256(01)00233-6
  44. Phys. Rev. Lett. v.84 no.8 Stiffness of Single-Walled Carbon Nanotubes under Large Strain T.Ozaki;Y.Iwasa;T.Mitani https://doi.org/10.1103/PhysRevB.65.235430
  45. Phys. Rev. Lett. v.76 no.14 Nanomechanics of Carbon Tubes:Instabilities beyond Linear Response B.I.Yakobson;C.J.Brabec;J.Bernholc https://doi.org/10.1103/PhysRevLett.84.1712
  46. Am. Sci. v.85 no.7-8 Fullerene Nanotubes:$C_{1.000.000}$ and Beyond B.I.Yakobson;R.Smalley https://doi.org/10.1103/PhysRevLett.76.2511
  47. Solid State Comm. v.101 no.8 Elastic properties of single-walled carbon nanotubes in compression C.F.Cornwell;L.T.Wille https://doi.org/10.1016/S0038-1098(96)00742-9
  48. Phys. Rev. Lett. v.83 no.15 Nanoplasticity of Single-Wall Carbon Nanotubes under Uniaxial Compression D.Srivastava;M.Menon;K.Cho https://doi.org/10.1016/S0038-1098(96)00742-9
  49. Appl. Phys. A. v.67 no.1 Theory of growth and mechanical properties of nanotubes J.Bernholc;C.Brabec;M.Buongiorno Naridelli;A.Maiti;C.Roland;B.I.Yakobson https://doi.org/10.1103/PhysRevLett.83.2973
  50. Phys. Rev. B. v.65 no.15 Atomistic simulations of nanotube fracture T.Belytschko;S.P.Xiao;G.C.Schatz;R.S.Ruoff https://doi.org/10.1007/s003390050735
  51. Phys. Rev. B. v.62 no.16 Plastic deformations of boron-nitride nanotubes:An unexpectec weakness P.Zhang;V.H.Crespi https://doi.org/10.1103/PhysRevB.65.235430
  52. Appl. Mech. Rev. v.55 no.6 Mechanics of carbon nanotubes D.Qian;G.J.Wagner;W.K.Liu;M.F.Yu;R.S.Ruoff https://doi.org/10.1103/PhysRevB.62.11050
  53. Phys. Rev. Lett. v.81 no.8 Buckling and collapse of embedded carbon nanotubes O.Lourie;D.M.Cox;H.D.Wagner https://doi.org/10.1115/1.1490129
  54. Nanotechnology v.14 no.3 Hypothetical silicon nanotubes under axial compression J.W.Kang;H.J.Hwang https://doi.org/10.1103/PhysRevLett.81.1638
  55. J. W. Kang and H. J. Hwang, "Hypothetical silicon nanotubes under axial compression", Nanotechnolgy, Vol. 14, No.3, p. 402, 2003. https://doi.org/10.1088/0957-4484/14/3/309