RFID 태그의 고속 인식 기법

High Speed Identification Method of RFID Tag

이광재*
Kwang-Jae Lee

요 약

RFID 태그의 인식에서는 인식물과 인식 시간이 매우 중요하며, 대량의 경제적인 태그를 이용하기 위해서는 단순한 구조를 요구한다. 이러한 요인들로 인해 유무선 네트워크 환경의 MAC 프로토콜과는 다른 요구 사항을 갖게 된다.
본 논문에서는 복수의 태그를 중동 없이 동시에 인식하기 위하여, 동시에 발생하지 않도록 하는 통신방식으로서 율시함수에 의한 적교 채널 이용하는 태역환산 기법의 적용 방향을 제안하고 이의 특성을 고찰한다. 제안 방식에서는 2 단계 인식방법을 이용하며, 제 1 단계에서는 태그에 내장된 고유 ID에 근거하여 특정 지역간 후에 응답하도록 구성함으로써 중동 문제를 해결하고, 제 2 단계에서는 기존의 폴딩방식을 따르도록 하였다.

Abstract

Identification rate and time are very important in the identification of RFID tags, and the tag requires simple structure to use economically large quantity of tags. These factors make the MAC protocols of wired or wireless network environment result in different requirements. In the paper, we propose a method to apply spread spectrum scheme using orthogonal channel via Walsh function as the anti-collision communication system for the purpose of non-collision identification of multiple tags, and consider its property. The proposed system use two step identification: in the first step, collision is resolved via constructing to respond after specific delay time based on unique ID, and conventional polling scheme follows in the second step.

Key Words : RFID, MAC, MC-CDMA, Walsh, OOK

I. 서 론

비접촉(contactless) RFID (radio frequency identification) 태그(tag)의 자동 인식 기술을 이용한 ETC (electronic toll collect) 시스템 등을 비롯한 다양한 시스템에 이용되고 있다. 그러나 대부분 단일 태그를 인식하는 경우이며, 복수 태그에 대한 인식 시스템의 경우에는 동시에 인식할 수 있는 태그의 수에 제한이 따르거나, 인식 시간이 과도하게 걸리지는 문제점이 있다. 복수 태그의 인식을 위해서는 공간 분할(space division), 시 분할(time division), 주파수 분할(frequency division) 기법 등이 이용될 수 있으며, 인식 환경의 요구 조건에 따라 적절한 기법을 이용하게 된다[1].

공간 분할에 근거한 방식으로는 질문기(interrogator)에 지향 특성이 예려한 환 안테나를 이용하거나 광과목에 의존하여 인접 태그로부터 간섭을 최소화하는 방식을 이용하고 있다. 그러나 태그에서의 유형과의 이용이 어려고, 복수 태그 간의 간섭을 피하기 어려워서 인식성능

*활려대학교 면티라디어 정보통신공학과
**논문 번호 : 2003-4-20
상기의 접속 프로토콜들은 주로 유무선 네트워크 환경을 고려한 MAC 프로토콜이며, RFID 인식을 위해 이를 그대로 적용하거나 일부 변형하여 이용하고 있기 때문에 RFID 인식 환경을 충분히 반영하고 있지 못한 경우가 많다. 유무선 네트워크 환경과 RFID 인식 환경에는 다음과 같은 차이가 있다.

1. 스케일(scale) : 유무선 환경에 비해 기지국 당 활성 많은 노드를 갖는다.
 (특히, 창고 관리 또는 대형 매장의 경우 수천 개 이상의 노드가 필요하게 된다.)

2. 경제성(cost) : 대량의 노드를 경제적으로 이용할 수 있어야 한다.

3. 크기(size) : 매우 작은 크기를 요구되며, 신용카드보다 작아야 한다.

4. 트래픽(traffic) : 빠르고 간단한 메시지 교환에 의한 통신이 수행된다.

이러한 요인들로 인해 유무선 네트워크 환경의 MAC(medium access control) 프로토콜과는 다른 요구사항을 갖게 되며, 인식률과 인식 시간이 매우 중요한 요인이 된다.

본 논문에서는 복수의 RFID 인식에 요구되는 인식률과 인식 시간에 대한 제약을 만족시킬 수 있는 통신방식으로서 대역폭확(spread spectrum) 기법과 가변 타임 슬롯(variable time slot)을 이용하는 방법을 제안하고 특성은 고찰한다. 본 제안 방식에서는 2 단계 인식방법을 이용하며, 제 1 단계에서는 태그에 내장된 고유 ID에 근거하여 특정 지연시간 후에 응답하도록 구성함으로써 품질 문제를 해결하고 제 2 단계에서는 기존의 풀링방식에 따르도록 하고 있다.

II. 시스템의 구성
본 절에서는 가시거리에 위치하는 복수의 RFID 태그를 인식하는 문제를 고찰하며, 그림 1은 이로 구성하는 방식의 전체적인 구성도이다. 그림 2는 RFID 태그의 일반적인 구성도로, 그림 3은 고유 ID 및 부가 정보 영역의 구성 예를 나타낸다. 24 bit로 구성된 고유 ID 부분의 부가정보를 기록하기 위한 부가 정보영역으로 구성되며, 부가 정보영역의 길이는 제한되지 않는다. 24 bit 고유 ID는 8 bit의 랜덤 코드와 16 bit의 일련번호로 구분되며, 이중 일련번호를 이용하여 태그의 고유지식을 결정하게 된다. 따라서 24 bit 고유 ID를 이용하여 식별 가능한 테그의 수는 2^{24} = 16,777,216이며, 일반적 응용분야에서 충분할 것으로 생각되지만, 인식에 소요되는 시간이 길어지는 문제점이 있다. PN(pseudo noise) 시퀀스의 길이는

\[L = 2^N - 1 \]

로 주어지며 4 단 LFSR(linear feedback shift register)의 경우 L=15가 되며, 최악의 경우 연속된 일련번호를 가진 15개의 ID 태그가 1 걸작적으로 연속적으로 PN 시퀀스를 출력하게 된다(LFSR)를 이용하는 대신 ROM에 저장된 PN 시퀀스를 이용한다. 이때, 검출하고 하는 특정 신호 이외의 모든 신호는 잔류되므로 인식성능에 영향을 미치지 않다. 지연시간을 늘림으로써 인식성능을 높일 수 있지만 전체 인식시간이 증가하게 된다.
그림 4. 1회 지연에 의한 응답파형
Fig. 4. Response Waveform by 1 Chip Delay

그림 5. PN 시퀀스의 주기적 자기상관 특성
Fig. 5. Cyclic Correlation Property of PN Sequence

또한, 고속 인식을 위해 PN 시퀀스의 침 자기 단위의 식별하는 것으로 가정하고, 간섭은 더욱 커진다. 그림 4는 연속된 일련번호를 갖는 태그들이 존재하는 경우의 수신신호의 파형을 나타내며, 1회 단위로 지연된 N개의 PN 시퀀스가 연속적으로 수신되는 경우와의 경우를 가정한 것이다. 여러 개의 PN 시퀀스 중 원하는 신호 외의 모든 신호는 점음으로 나타나게 되어 최대 $\frac{1}{N-1}$ 만큼 신호 대 점음비가 감소를 초래하게 된다. 주기가 N인 최장 부호시퀀스(maximal-length sequence)에서 점음 상관 값을 1로 정의하면 경우 주기적 자기상관 값은 다음과 같은 주기함수가 되며, 이를 그림 5에 나타내었다.

$$R_c(K) = \frac{1}{N} \sum_{i=0}^{N-1} c_i c_{i+k}, \quad k = 0, N, 2N, \ldots$$

$$(N-1)$$ 개의 간섭신호를 가산성 백색잡음으로 모델링 하면, 결합된 PSD는 대략 $$(N-1)P_s T_s/2$$가 된다. 따라서 신호 대 점음비는

$$E_s/N_0 = P_s T_s/\{N-(N-1)P_s T_s\}$$

이 되며, 이는 동일 일련번호를 갖는 여러 그룹의 태그들이 동시에 응답함으로써 간섭이 증가하고, 결국 오류율의 증가로 나타나게 됨을 의미한다. 또한, PN 시퀀스의 부분 상관 특성은 일정하지 않으며, 매우 큰 분산을 갖는다. 이는 하나의 태이等症状은 PN 시퀀스의 주기가보다 짧아야 함을 의미하며, 일련번호 부분을 고유의 지연시간으로 활용하여 5 Mcps PN 시퀀스의 상관특성을 이용하는 경우 PN 침의 주기는 $1/(5 \times 10^{-6}) = 0.2 u$s이 된다. PN 시퀀스의 주기 N=7인 경우, PN 시퀀스의 1 주기 단위의 지연시간은 24개의 ID 태그를 인식하는데 소요되는 시간은 $24 \times 7 \times 0.2 u$s = 23 Sec가 되며, PN 시퀀스의 주기 N=5인 경우, 50초 이상이 소요된다. 최근 발달한 연구되고 있는 UWB(ultra wide-band) 환경의 400 Mcps 밴드를 이용하는 경우를 고려하여 대략 3 초가 소요되기 십상적이지 못하다. 따라서 인식 시간을 줄이기 위한 방법이 요구된다. 본 논문에서는 이를 위해 고유 ID를 그룹화함으로써 인식에 필요한 태일 숫자의 수를 줄이고 하나의 숫자에 적재 적화를 형성하는 방법으로 다수의 태그를 동시에 인식하는 방법을 이용한다.

그림 6. 변량 태임 슬롯
Fig. 6. Variable Time Slot

제한 방식은 다음과 같은 2 단계 방법을 이용하여 각 태그의 고유 정보를 인식하게 된다.

단계 1:
질문기에서 송출되는 동기(sync) 신호에 따라 모든 태그들은 질문기에 동기되어 동작하며, 태그의 고유 ID로 정해지는 특정 지연시간 후에 내장된 PN 시퀀스를 송출하고, 질문기의 수신부에서는 이를 수신한 후 상관기를 이용하여 현재 접속을 원하는 태그들의 고유 ID를 수집한다.

단계 2:
단계 1에서 수집된 고유 ID를 이용하여 현재 접속을 원하는 태그들만을 대상으로 평방방식에 의해 접속(access)을 수행한다.
제 1 단계에서는 그림 6과 같은 가변 타임 슬롯(variable time slot)에 동기되어 동작하며, 각 태그는 끝물기의 슬롯을 확인하여 자신의 고유번호에 일련번호와 일치하는 타임 슬롯에서 그룹코드에 의해 정해지는 256 핀시코드로 PN 시퀀스를 변조하여 송출한다. 그림기의 수신부에서는 수신된 신호를 동일 PN 시퀀스를 이용하여 역확산한 후 고속 하다마르 변환(FHT)을 이용하여 그룹코드를 추출한 후 일반번호와 조합하여 인식 대상 태그의 존재 유무를 파악하게 된다. 타임 슬롯에 할당된 일련번호를 갖는 태그가 존재하지 않는 경우 질문기의 수신부에서는 반송자가 나타나지 않으므로, 그림 7의 호흡도에 따라 다음 슬롯을 나타내는 동기신호를 송출하게 된다. 따라서 PN 시퀀스 1주기에 해당하는 짧은 구간과 256 PN 시퀀스 주기를 갖는 긴 구간으로 구성되는 가변 타임 슬롯 구조가 되며, 전체 슬롯 수에 비해 인식 대상 태그의 수는 적게 적어도 인식에 소요되는 시간을 크게 줄일 수 있게 된다. 이러한 방법으로 2^{24} 개의 태그를 인식하는데 소요되는 표 1과 같으며, 최대값(max)은 2^{24} 개의 태그가 모두 존재하는 경우이며, 최소값(min)은 단 하나의 태그만 존재하는 경우에 해당한다.

<table>
<thead>
<tr>
<th>Chip Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Mcps</td>
</tr>
<tr>
<td>400 Mcps</td>
</tr>
<tr>
<td>PN 주기</td>
</tr>
<tr>
<td>Max</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>N = 7</td>
</tr>
<tr>
<td>23 Sec</td>
</tr>
<tr>
<td>0.1 Sec</td>
</tr>
<tr>
<td>0.3 Sec</td>
</tr>
<tr>
<td>0.01 Sec</td>
</tr>
<tr>
<td>N = 15</td>
</tr>
<tr>
<td>52 Sec</td>
</tr>
<tr>
<td>0.2 Sec</td>
</tr>
<tr>
<td>0.6 Sec</td>
</tr>
<tr>
<td>0.02 Sec</td>
</tr>
<tr>
<td>N = 31</td>
</tr>
<tr>
<td>104 Sec</td>
</tr>
<tr>
<td>0.4 Sec</td>
</tr>
<tr>
<td>1.2 Sec</td>
</tr>
<tr>
<td>0.05 Sec</td>
</tr>
</tbody>
</table>

제 2단계는 일반적인 풀링과정에 해당하며, 기존의 통신방식을 이용하여 적속이 이루어지므로, 본 논문에서는 더 이상 다루지 않으며, 제 3단계에서의 인식률에 영향을 미치는 요인에 대해서만 다루기로 한다.

그림 7. 단계 1의 호흡도
Fig. 7. Flowchart of Step 1

그림 8. 송신부의 구조
Fig. 8. Structure of Transmitter

III. 시스템 모델

그림 8은 각 태그의 응답에 따른 제어 방식의 동작적인 송신부 구조이며, MC(multi-code) CDMA의 송신부의 구조와 유사하다. 시스템의 동기는 완벽하게 유지되는 것으로 가정하고 임시 함수에 의한 영향을 무시하면, 태그가 존재하는 경우 전송 신호는 다음과 같다.

\[s(t) = d(t)p(t)\sqrt{2\sigma} \cos(2\pi f_d t) \]

여기서, \(d(t) \)는 이진 베타, 즉 태그의 존재 유무를, \(p(t) \)는 확산코드, \(\sigma \)는 신호전력의 나타내며, 임시 코드는 직교제곱의 형성에만 기여하고, 처리이득과는 무관하

\[r(t) = \sum_{i=1}^{p} a_i d(t - \tau_i) \cos(2\pi f_c (t - \tau_i) + \theta_i) + N(t) \]

\[SNR = \frac{PG}{T-1} \]

\[SNR = \frac{(A_0 + A_1 + \ldots + A_{q-1})^2}{NPG \left(q \sum_{k=1}^{p} A_k^2 - (A_0^2 + A_1^2 + \ldots + A_{q-1}^2) \right)} \]

\[SNR = \frac{9PG}{6N} \]

\[r(t) = N(t) \]

\[f_0(r) = \frac{1}{\sqrt{2\pi} \sigma^2} e^{-r/2\sigma^2} \]

\[f_1(r) = \frac{1}{\sqrt{2\pi} \sigma^2} e^{-(r-A)^2/2\sigma^2} \]

\[P_0 = \text{Prob}(r > A/2) = \int_{A/2}^{\infty} f_0(r) dr \]

\[P_1 = \text{Prob}(r < A/2) = \int_{-\infty}^{A/2} f_1(r) dr \]

\[P_e = P_0P_0 + P_1P_1 \]

\[P_e = P_0 \int_{\gamma}^{\infty} f_0(r) dr + P_1 \int_{-\infty}^{\gamma} f_1(r) dr \]
\[\frac{\partial P_e}{\partial \gamma} = 0 = -P_0f_0(\gamma) + P_1f_1(\gamma) \] (14)

\[f_1(\gamma) = \frac{P_0}{P_1} f_0(\gamma) \] (15)

최소 오류율을 위한 최적 모양의 \(\gamma \)는 사전확률(a priori probability) \(P_0 \)와 \(P_1 \)에 의존하며, \(P_0 \neq P_1 \)인 경우 다음과 같이 주어진다.[5][6].

\[\gamma_{opt} = \frac{E}{2} + \frac{N_0}{2} \ln \frac{P_0}{P_1} \] (16)

여기서, \(E \)는 신호의 에너지, \(N_0/2 \)는 백색 가산성 잡음의 정적 스펙트럼 밀도를 나타내며, 500개 이하의 태그를 인식하는 경우를 고려하면 \(P_1 \)이 0.01이하의 적은 값을 갖게 되며, 최적 결정 변수는 \(E/2 \) 보다 큰 값을 갖게 된다.

상기 식(16)은 단지 AWGN 환경만을 고려한 경우이며, 레이리(Rayleigh), 라이시안(Rician) 등 다양한 채널 환경에 대해서는 문헌[7][8][9]에서 자세한 특성 분석 결과를 제시하고 있다.

IV. 성능분석

그림 9은 사물레이션 모델을 나타낸다. 점문기관과 태그간에는 완벽한 동기가 유지되고, 다중경로에 의한 영향이 완벽히 제거되어 직각 채널 간에는 간섭이 없는 것으로 가정하였으며, 다른 태그로부터의 간섭 및 불완전한 직각 채널에 의한 영향 등은 모두 가산성 백색잡음으로 간주하였다. 그림 10은 \(E_0/N_0 \) 및 각 설계의 발생확률에 따른 최소 오류율을 얻기 위한 최적 결정 변수를 나타낸다. 그림 11은 \(E_0/N_0 \)에 따른 평균 오류율을 나타내며, 실험은 \(P_0 = P_1 \)인 경우의 이론치를, 점선은 \(P_1 = 0.01 \)인 경우 SNR에 따른 최적 결정변수를 적용하여 구한 결과이 다. 특히, \(P_1 \)이 매우 적으며, SNR가 낮은 경우에 결정변 수에 따라 오류율의 차이가 크게 나타나는 것을 알 수 있다. 이는 일반적인 통신환경에서는 큰 의미를 갖지 못하지만 적은 수의 태그만을 인식 대상으로 하는 경우에 있어서 매우 유용한 특성이며, 양극성 신호인 ASK(amplitude shift keying) 또는 FSK(frequency shift keying)에 근거하는 성능을 얻을 수 있음을 의미한다.

또한 제안 방식은 무수 태그의 동시 인식을 목적으로 하기 때문에 기존 유무선 네트워크의 다중 사용자 환경과 마찬가지로, 신호 전력이 증가에 따라 인식 거리는 증가하지만 SNR의 개선은 이대로 이어졌다. 신호 전력의 증 가되면 곧바로 간섭의 증가로 나타나며, 결국 잡음이 증 가하는 결과가 되어 SNR에 영향을 주지 못하기 때문이며, 적절한 오류율을 얻기 위해서는 적당한 저리에 대해 도록 할 필요가 있으며, 제안 방식의 제 1단계에서는 오류 제어 기법을 이용하지 않기 때문에 PN 주기는 20 이상이 되어야 할 것으로 보이며, 이 경우 SNR는 20 dB 이상 확 보되어 10^{-12} 정도의 오류율을 얻게 된다.

![그림 9. 사물레이션 모델](image)

Fig. 9. Simulation Model

![그림 10. 최적 결정 변수](image)

Fig. 10. Optimum Decision Variable

![그림 11. \(E_0/N_0 \) vs. 평균 오류율](image)

Fig. 11. \(E_0/N_0 \) vs. Average Error Rate
V. 결 론
본 논문에서는 확산 대역 기법과 일시 변조를 이용하여 충돌 없이 RFID 태그를 인식하는 방법과 인식 시간을 줄이기 위해 가변 타임 슬롯을 이용하는 방법을 제시하였다. 기존 통계적 비중들 MAC 알고리즘의 인식률이 동일 채널의 오류율을 고려하지 않은 상태에서 최대 95% 정도이고, 동시에 인식할 수 있는 고유 ID의 수가 256개를 넘기 어려울 뿐만 아니라 인식에 소요되는 시간이 급격히 증가하게 되며, 결정적 방식의 경우 100%의 인식률을 갖지만 과도한 전송 특성을 갖는 등의 문제점 고려할 때, 제안방식은 두 방식이 갖는 장점을 적중히 취하고 있는 것으로 볼 수 있다. 또한 RFID 분야 이외의 다양한 시스템 환경에서 용용도 고려해 볼 수 있으며, 최근 활발히 연구되고 있는 UWB 방식을 이용하면 효율적인 구현이 가능한 것으로 기대된다.

참고문헌