초록
This article deals with a minimum energy control law of S-CVT connected to a dc motor. The S-CVT can smoothly transit between the forward, neutral, and reverse states without any brakes or clutches, and its compact and simple design and its relatively simple control make it particularly effective for mechanical systems in which excessively large torques are not required. And such an S-CVT equipped power transmission has the advantage of being able to operate the power sources in their regions of maximum efficiency, thereby improving the energy efficiency of the transmission system. The S-CVT was intended to primarily for use in small power capacity transmissions, thus a dc motor was considered here as the power source. We first review the structure and operating principles of the S-CVT, including experimental results of its performance. And then we describe a minimum energy control law of S-CVT connected to a do motor. To do this, we describe the results of an analysis of the dynamics of an S-CVT equipped power transmission and the power efficiency of a DC motor. The minimum energy control design is carried out via B-spline parameterization. And we show numerical results obtained from simulations illustrate the validity of our minimum energy control design, benchmarked with a computed torque control algorithm for S-CVT.