Abstract
This paper describes self-localization of a mobile robot from the multiple candidates of landmarks in outdoor environment. Our robot uses omnidirectional vision system for efficient self-localization. This vision system acquires the visible information of all direction views. The robot uses feature of landmarks whose size is bigger than that of others in image such as building, sculptures, placard etc. Robot uses vertical edges and those merged regions as the feature. In our previous work, we found the problem that landmark matching is difficult when selected candidates of landmarks belonging to region of repeating the vertical edges in image. To overcome these problems, robot uses the merged region of vertical edges. If interval of vertical edges is short then robot bundles them regarding as the same region. Thus, these features are selected as candidates of landmarks. Therefore, the extracted merged region of vertical edge reduces the ambiguity of landmark matching. Robot compares with the candidates of landmark between previous and current image. Then, robot is able to find the same landmark between image sequences using the proposed feature and method. We achieved the efficient self-localization result using robust landmark matching method through the experiments implemented in our campus.