DOI QR코드

DOI QR Code

가스모니터링 시스템에서의 신경회로망 기반 센서고장진단

Neural Network-Based Sensor Fault Diagnosis in the Gas Monitoring System

  • 이인수 (상주대학교 전자전기공학부) ;
  • 조정환 (경북대학교 전자ㆍ전기ㆍ컴퓨터공학부) ;
  • 심창현 (㈜센스엔센서) ;
  • 이덕동 (경북대학교 전자ㆍ전기ㆍ컴퓨터공학부) ;
  • 전기준 (경북대학교 전자ㆍ전기ㆍ컴퓨터공학부)
  • 발행 : 2004.02.01

초록

본 논문에서는 실내대기 가스모니터링 시스템에서의 센서 고장 진단을 위한 신경회로망 기반 고장진단방법을 제안한다. 제안한 고장진단 방법에서는 신호패턴추출을 위해 센서히터 온도조절방법을 이용하였으며, 분류를 위해서는 ART2 신경회로망을 이용하였다. 그리고 가스모니터링 시스템의 실제 데이터를 이용한 시뮬레이션을 통해 제안한 ART2 신경회로망 기반 센서고장진단방법의 성능과 유용성을 확인하였다.

In this paper, we propose neural network-based fault diagnosis method to diagnose of sensor in the gas monitoring system. In the proposed method, using thermal modulation of operating temperature of sensor, the signal patterns are extracted from the voltage of load resistance. Also, ART2 neural network is used for fault isolation. The performance and effectiveness of the proposed ART2 neural network based fault diagnosis method are shown by simulation results using real data obtained from the gas monitoring system.

키워드

참고문헌

  1. W. Gopel, "Chemical imaging: Concepts and visions for electronic and bio-electronic noses," Sens. Actuators B, vol. 52, pp. 125-142, 1998. https://doi.org/10.1016/S0925-4005(98)00267-6
  2. C. Delpha, M. Siadat, and M. Lumbreras, "Identification of Forane R134a in an air conditioned atmosphere with a TGS sensor array," IEEE Trans. on Instrumentation and Measurement, vol. 50, pp. 1370 -1374, 2001. https://doi.org/10.1109/19.963212
  3. E. Y. Chow and A. S. Willsky, "Analytical redundancy and the design of robust failure detection systems," IEEE Trans. Automat. Contr., vol. AC-29, no. 7, pp. 603-614, 1984.
  4. R. Patton, P. Frank and R. Clark, Fault Diagnosis in Dynamic Systems; Theory and Application, Prentice Hall, 1989.
  5. M. A. Massoumnia, "A geometric approach to the synthesis of failure detection filters," IEEE Trans. Automat. Contr., vol. AC 31, no. 9, pp. 839-846, 1986.
  6. M. M. Polycarpou and A. T. Vemuri, "Learning methodology for failure detection and accommodation," IEEE Contr. Syst. Mag., pp.16-24, 1995.
  7. C. H. Dagli, Artificial Neural Networks for Intelligent Manufacturing, Chapman and Hall, 1994.
  8. E. Eryurek and B. R. Upadhyaya, "Sensor validation for power plants using adaptive back propagation neural network," IEEE Trans. Nuclear Science, vol. 37, no. 2, pp. 1040-1047, 1990. https://doi.org/10.1109/23.106752
  9. L. I. Burke, "Competitive learning based approaches to tool-wear identification," IEEE Trans. Syst., Man and Cybern., vol. 22, no. 3, pp. 559-563, 1991. https://doi.org/10.1109/21.155957
  10. T. Sorsa and H. K. Koivo "Application of artificial neural networks in process fault diagnosis," Automatica, vol. 29, no. 4, pp. 843-849, 1993. https://doi.org/10.1016/0005-1098(93)90090-G
  11. M. Pardo, G. Faglia, G. Sberveglieri, M. Corte, F. Masulli and M. Riani, "Monitoring reliability of sensors in an array by neural networks", Sens. Actuators B, vol. 67, pp. 128-133, 2000. https://doi.org/10.1016/S0925-4005(00)00402-0
  12. M. A. Kramer and J. A. Leonard, "Diagnosis using backpropagation neural networks analysis and criticism," Computers Chem. Engng., vol. 14, no. 12, pp. 1323-1338, 1990. https://doi.org/10.1016/0098-1354(90)80015-4
  13. A. Srinivasan and C. Batur, "Hopfield/ART-1 neural network-based fault detection and isolation," IEEE Trans. Neural Networks, vol. 5, no. 6, pp. 890-899, 1994. https://doi.org/10.1109/72.329685
  14. 이인수,신필재,전기준, "ART2 신경회로망을 이용한 선형 시스템의 다중고장진단", 제어.자동화.시스템공학회 논문지, 제 3권, 제 3호, pp. 244-251, 1997.
  15. S. Y. Kung, Digital Neural Networks, Prentice Hall, 1993.
  16. A. P. Lee and B. J. Reedy, "Temperature modulation in semiconductor gas sensing," Sens. and Actuators B, vol. 60, pp. 35-42, 1999. https://doi.org/10.1016/S0925-4005(99)00241-5