IMPROVED STATIONARY $L_p$-APPROXIMATION ORDER OF INTERPOLATION BY CONDITIONALLY POSITIVE DEFINITE FUNCTIONS

  • 발행 : 2004.01.01

초록

The purpose of this study is to show that the accuracy of the interpolation method can be at least doubled when additional smoothness requirements and boundary conditions are met. In particular, as a basis function, we are interested in using a conditionally positive definite function $\Phi$ whose generalized Fourier transform is of the form $\Phi(\theta)\;=\;F(\theta)$\mid$\theta$\mid$^{-2m}$ with a bounded function F > 0.

키워드

참고문헌

  1. Multivariate Approximation: From CAGD to Wavelets New Developments in the Theory of Radial Basis Function Interpolation M. D. Buhmann;K. Jetter(ed.);F. I. Utreras(ed.)
  2. Approximation Theory VI Interpolation and Approximation by Radial and Related Functions N. Dyn;C. K. Chui(ed.);L. L. Schumaker(ed.);J. Ward(ed.)
  3. Israel Journal of Mathematics v.78 On Multivariate Approximation by Integer Translates of a Basis Function N. Dyn;I.R.H. Jackson;D. Levin;A. Ron
  4. RAIRO Analyse numerique v.12 Sur l'erreur d' interpolation des fonctions de plusieurs variables par les $D^m$- splines J. Duchon
  5. Constr. Approx. v.14 A Bound on the Approximation Order of Surface Splines M. Johnson
  6. Constr. Approx. v.2 Interpolation of Scattered Data: Distances, Matrices, and Conditionally Positive Functions C. A. Micchelli
  7. Approximation Theory and its Applications v.4 no.4 Multivariate interpolation and conditionally positive functions I W. R. Madych;S. A. Nelson
  8. Math. Comp. v.54 Multivariate interpolation and conditionally positive functions II W. R. Madych;S. A. Nelson
  9. J. Approx. Theory v.64 Norms of Inverses and Condition Numbers for Matrices Associated with Scattered Data F. J. Narcowich;J. D. Ward
  10. Advances in Numerical Analysis Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions The Theory of Radial basis function approximation in 1990 M. J. D. Powell;W.A. Light(ed.)
  11. Numer. Math. v.68 The uniform convergence of thin plate spline interpolation in two dimension M. J. D. Powell
  12. Math. Comp. v.68 Improved Error Bounds for Scattered Data Interpolation by Radial Basis Functions R. Schaback
  13. IMA J. Numer. Anal. v.13 Local error estimates for radial basis function interpolation of scattered data Z. Wu;R. Schaback
  14. J. of Approx. Th. v.112 Interpolation by Radial Basis Functions on Sobolev Space J. Yoon
  15. Math. Comp. $L_p$-Error Estimates for 'Shifted' Surface Spline Interpolation on Sobolev Space J. Yoon