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Robust Controller Design Method for Systems with Parametric
Uncertainties

Jietae Lee, Doe-Gyoon Koo, and Thomas F. Edgar

Abstract: This paper presents iterative schemes and continuation schemes for designing robust controllers which stabilize dynamic
systems having bounded parametric uncertainties. Utilizing results of the cheap control problem, some existence conditions of the
robust controller are obtained, which are different from the matching conditions. Continuation schemes are used to overcome the
divergence problem of iterative schemes. The robust controller design method is extended to nonlinear system and easily implement-
able series solution is also obtained. Results are illustrated with simple examples.
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L Introduction

There has been great interest recently in the influence of
uncertainty in model parameters on the robustness of various
process control strategies. There are many cases where pa-
rameters may be changing during operations and their exact
values are difficult to measure on-line. In order to preserve
closed-loop stability under parameter variations robust con-
trollers can be designed if bounds on the parameter variations
are known.

Many methods to obtain robust controllers have been re-
ported. They are classified into three categories(Siljak, 1989):
frequency domain methods, algebraic methods by the analysis
of characteristic polynomials, and methods by the Lyapunov
stability theorem. Frequency domain methods extend the clas-
sical methods for SISO systems based on gain and phase mar-
gins. They are now well-established and very powerful for
linear multivariable uncertain systems (Dorato, 1987). Alge-
braic methods extract the robustness from the characteristic
polynomial; recent progress in mathematical programming
methods and computer graphics make the methods more at-
tractive and promising (Siljak, 1989). Lyapunov methods have
long been used in analyzing stability and robustness of control
system since the work of Kalman and Bertram (1960). They
directly use the state equations and unlike the other two ap-
proaches mentioned above, they can easily be applied to
nonlinear systems.

Using the Lyapunov method, Leitmann (1979) obtained a
robust controller for a class of uncertain systems which satisfy
some conditions known as the matching conditions. This class
of uncertain systems can be stabilized robustly for an arbitrar-
ily large uncertainty bound. Other researchers have character-
ized and enlarged this class of uncertain systems (see refer-
ences in Corless and Leitmann, 1988). Some results for
nonlinear systems have been also reported, for example, a
cone type of nonlinear perturbation (Noldus, 1982) and some
nonlinear systems which are linearizable by the differential
geometry method (Ha and Gilbert, 1987; Kravaris and Palanki,
1988). The Lyapunov method is very powerful but is highly
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dependent on the clever choice of a Lyapunov function which
may sometimes be difficult to construct (Vannelli and Vidyas-
ger, 1985). Chang and Peng (1972) proposed a robust control-
ler design method known as guaranteed-cost control. It is
based on the optimal control method, and uses a suboptimal
cost as the Lyapunov function. In this method, an upper bound
of the cost is obtained for bounded structured uncertainties
(Rissanen, 1966). For linear systems, they obtained a robust
controller by solving Riccati equations iteratively. Kosmidou
and Bertrand (1989) proposed a different iterative method
whose convergence is guaranteed. Peterson and Hollot (1986)
proposed a robust controller design method which was also
based on the Riccati equation but was non-iterative.

In this paper we further exploit the Kosmidou and Bertrand
method and the Chang and Peng method. In section II, we
have obtained a new convergent iterative scheme for the Kos-
midou and Bertrand method and have shown that existence of
the linear robust control law is closely related to the cheap
control problem. We also propose a continuation scheme to
find the maximum allowable perturbation. In section III,
nonlinear uncertain systems have been considered and a
nonlinear robust control law, which is in series form, has been
obtained. In section IV, for a low gain robust control law, the
Chang and Peng method has been treated.

IL Linear uncertain system
Consider the linear dynamic system:

x(t) = (A+gD)x(t)+ Bu(z) (n
where xe R", ue R™, q is an unknown constant and A, D
and B are known matrices with appropriate dimensions. The
problem is to find a feedback control law which stabilizes the
system (1) for any gel-g,,.q, ] while not significantly
degrading the cost functional:

J(x(t), u()) = L : T Ox + u” Ru)dt

where R>0Q and Q020.

Chang and Peng (1972) formulated this problem as the
guaranteed cost control problem and obtained a robust control
law:

u(x)=—R"'B" Px. 2)

Here P is the positive definite solution of
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PA+A"P-PBR'B"P+Q+®(P,D)=0 3)

where for any g€ |—quy.qy]-

g(PD+D"P)<®(P,D) .
Three candidates for ®(P,D) have been proposed:
(a) (Chang and Peng, 1972)

®(P, D) = q,,S 'diag{1 ,,(PD+ D" P)1}§ @)
where S is a diagonalization transformation matrix such that
PD+ D" P=S"diag{A,(PD+ D" P)}$

(b) (Peterson and Hollot, 1986)
®(P,D) = 6PVV7'P+‘ITMWTW (5)

where D=VW and for some positive constant § .
(c) (Kosmidou and Bertrand, 1988)

€I>(P,D)=5P+q—§4—DTPD. (6)

Equation (4)was originally proposed by Chang and Peng
(1972). They obtained a robust control law by solving the
resulting Riccati equation iteratively. The convergence of the
iterative scheme was not proven due to the nonlinearity of
equation (4) about P. Equation (5) results in

2
PA+ATP—P(BR'B" —6VVT)P+Q+qTMWTW =0.

If BR'B" —~8Vv7 >0, it has a positive definite solution
and the control law (2) becomes a robust control law. More
elaborate results were given by Peterson and Hollot (1986).
Equation (6) was used by Kosmidou and Bertrand (1988).
They proposed a convergent iterative scheme for the resulting
Riccati equation. Their iterative scheme is simple but it is
somewhat hard to find an initial value for which convergence
is guaranteed.

Here we propose a new convergent iterative scheme for the
Riccati equation (3) with (6):

2
PA+ATP—PBR'B"P+Q+6P +‘%MDTPD =0 (7)

and by applying the cheap control theorem to the iterative
scheme, existence conditions of a positive definite solution of
(7) are exploited.
1 lterative scheme

To solve equation (7), we propose an iterative scheme:

PeoAs + Aj Py — P BR™'BT P,
+Q+qTMDTPkD =0
Py =0 (®)
é
where Ag =(A+=1).
Lemma 1: Asstime that (As,B) is stabilizable. The se-

quence P, isnon-decreasing.
Proof: Since DTPHDSDTP,)D for P, <P, , the above

lemma follows from Theorem 1 of Wimmer (1985) [ ]

Theorem 1: Assume that (Az,B) is stabilizable. The
iterative scheme (8) converges if and only if a positive definite
solution of equation (7) exists.

Proof: If a positive definite solution P exist, the sequence
P, is bounded above by the solution as 0< P <---<P.
Hence it converges to a positive definite solution. Necessary
part is self-evident. |

The above theorem shows that we can obtain a positive
definite solution of (7) if such a solution exists. That is, we
can obtain a stabilizing controller (Plubelle et al., 1986) by the
iterative scheme (8). Here some existence results for equation
(7) are sought. That is, using results on the cheap control prob-
lem (Sannuti, 1983; Saberi and Sannuti, 1989), a bound of the
sequence P, is exploited. Since B, is non-decreasing, an
upper bound guarantees its convergence.

Theorem 2: Let D=VW. The iterative scheme (8) is con-
vergent for g,, € (0,0)) where

s =1/\/0'M AS) )

and P, is the positive definite solution of

. 1 -
P.A; +AjP.——P.BR'B"P,
£” (10)

+£2Q+%W7‘W =0

where, the value of ¢ means some positive constant.
Proof: Let P, = £%P . Then equation (10) becomes

PA; + AL P-PBR'B"P+Q+ (SI—ZWTW =0
e

The equality (9) means that qﬁ,DTPDS-l?—WTW. If
2
q@DTPsz%WTW,PM <P and q;DTPMDs%WTW-
€’ e’
Since 4, D' P,D S—I?WTw, P, <P for all k. That is, the
e

sequence P, is bounded by e“ZPE . Convergence follows. [l
Corollary 1: Assume that the dynamic system
x=Agx+Bu an
y=Wx
is stabilizable and detectable, and it has no transmission zeros
with zero real parts. Then

o =1/ Jo, VBV +o(e”))

where 176 is the asymptotic solution of equation (10) as ¢
goes to zero.

Proof: see Sannute(1983). n

The equation for E is available in Sannuti (1983). It de-
pends only on the system matrices (A;, B, W) of (11), so
computation of 1—>E is straightforward. However, its analytical
description is rather complicated because it requires some
magnitude scaling and transformation of states. The above
corollary shows that, if VTPV =0, ¢ grows to infinity as
£ goes to zero. The system with such uncertainties can be
stabilized for arbitrarily large uncertainty bounds like uncer-
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tainties satisfying the matching conditions. For some systems,
VTEV is zero regardless of V.

Corollary 2: If the system (11) is stabilizable, detectable
and of minimum phase, then ¢ grows to infinity as & goes
to zero.

Proof: Under the condition, P, =0 (Sannuti, 1983). W

Example 1: Consider a system

. [~125 0 0o 0] [t
x= X+ g x+| |u
[ 0 —1.25] [0 1] H

Q=1 and R=1. If one chooses & between 0 and 2.5, the
system satisfies the condition of Corollary 2. Hence the itera-

tive scheme (8) converges regardless of the magnitude of ¢,, .

The system matrix used in Corollaries 1 and 2 is Ay.
Sometimes its structure is much different from A and is inade-
quate for the above analysis. Results which can be applied
directly to the system matrix A are now sought.

Theorem 3: The iterative scheme (8) is convergent for
qu € (0,0,] and §=p/o, (F,)
where

o, =)0y (P)oy VTP,V (12)
and P, is the solution of

P,A+A"P, —LZP#BR"BTPA +uPQ+ Ul +Wiw =0
u

Proof:2 The equality (12) means that
&P, +q_MDTpuD <ul +W'W . Hence, as in Theorem 2,

u‘zPﬂ bounds the sequence P, and convergence follows.
Example 2: Consider a system

ol e b

R=1 and Q = diag(1,0). Then we have

o'’y 0w
Py = 32 1
O’y o) |-

Hence «, grows to infinity as u goes to zero. That is, a
solution of (7) can be found by the iterative scheme (8) for an
arbitrary large g,,, whenever & is chosen as in Theorem 3.

Corollary 3: Assume that the system

X=Asx+Bu
y=Wx
is stabilizable, detectable and of minimum phase. If WB is
non-singular, then ¢, grows to infinity as y goes to zero.
Proof: Under the conditions, P, =0(u) (Sannuti, 1983).
As in Peterson and Hollot (1986), in consideration of the
above analysis, the part of uncertainty matrix D which satis-
fies the matching conditions can be removed. That is, if D can
be decomposed as D = BW, +VW , then we can choose

®(P,D)= Y PBR"'B" P+2q},W,RW, + P

2
+qTMWTVTPVW

and the resulting Riccati equation has the same structure as
that of equation (7) for V and W. The above asymptotic analy-
sis can be applied to the part VW of D.
For some cone-bounded nonlinear perturbation such as
x = As+qf,(x)+ Bu (13)

the above results can be extended and a robust linear control-
ler can be obtained.

Theorem 4: If the nonlinear function f,(x) is bounded
as, for any positive definite P,

Fo(0 P (x) < x" DT PDx (14)

and the solution of equation (7) exists, ;then the control law
(2) stabilizes the system (13) robustly for any ge[-gq,,,qy]-
Proof: Under the condition (14), x”Px becomes a Lyapunov
function for the system (13) for any ge[—q,,,q,,1- |
2. Continuation scheme
Sometimes there does not exist a solution P of (7) for the
required g,, . In this case we should choose another method
orreduce g, for arobust controller. Here, as a method illus-
trating the latter approach, a continuation method (Allgower
and Georg, 1980) is adopted to find a maximum possible g M
as well as a solution. The continuation method has been used
as a globally convergent method for nonlinear equations
which are very hard to solve. For example, it has been applied
to solve the Riccati equation (Jamshidi et al., 1970) and a root-
locus problem (Pan and Chao, 1978).
Assume that P and g,, are functions of a dummy parame-
ter 7 and let
W(P(1),qy (1)) = PA+ AT P
2 (15)
—PBR“BTP+Q+6P+56MDTPD

We track P satisfying  as g,, varies. To do this, we differ-
entiate equation (15) about the dummy parameter T and
equate as
W(P(T),q) (1) = P(A; ~ BR"'B" P+ (A; - BR'B"P)T P (16)
2 .
+q?MDTPD+-2qM%DTPD=—‘I’(P,qM),

Since W(P(T),q,, (7)) = e "W(P(0),q,,(0)) , P(t) becomes
the solution of (7) for ¢,,(r) whenever P(0) is the solution
of (7) for g,,(0). By applying the Euler integration rule to
the equation (16), we can obtain

P (As—BR'B"P)+(A; -BR'B"P)T P,

\ , (172)
+ 3k TR D =~(PBR7BT P, + 0+ LM pTp p)

A i1 =y Yy - (17b)

We solve equation (17a) iteratively with a standard Lyapunov
equation solver, that is,
Piuiin(As =BR™'BTP)+(As —BR™'B"P) P,y 1)

M k& dm

2
=—(P,BR'B"P, +Q+ D' P.D)

2 7
- —D" P, ;D

Peno=F - (18)
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Theorem 5: Assume that P, is positive definite and
(A; —BR™'P,) is stable. The iterative scheme (18) is conver-
gent if and only if equation (17a) has a positive definite solu-
tion.

Proof of Theorem 5 is very similar to that of Theorem 1 and
omitted here. According to the Theorem 5, we increase g,
to the point just before the iterative scheme (18) diverges

II1. Extension to nonlinear systems
In this section, the method of section II is extended to
nonlinear systems. Consider a nonlinear system described by

x(1) = f(x(0) + qf, (x(0) + g (x(D)u(r) (19)

with a cost functional:
JOx(to). u(®) = [ "(m(x) +u” Ru)dt

Here f(0)= f,(0)=0.Itis assumed that the above system is

controllable and observable for any gel|—g,,q, ] (Moylan

and Anderson, 1973) and all nonlinear functions are analytic.
A guaranteed cost control law is

u(x)=- YR g(x)" Vo(x) (20)

where ¢(x)is the positive definite solution of following Ham-
ilton-Jacobi equation:

Vo) f(0)= Y Vo) g(0OR " g(x)" Vo(x)
+m(x) + D(P(x), f(x))=0.

(2D

Theorem 6: Assume that the Hamilton-Jacobi equation
(21) has a positive definite solution around the origin. Let €}
be a level set of the function ¢(x) such that, for some posi-

tive constant v,, 0<¢(x)<vy,andforany gel-gq, .qy],

aVox)’ f1,(x) S DP(x), £1(x) (22)

Then the system (19) with the control law (20) is asymptoti-
cally stable in the region Q such that every trajectory start-
ingin Q remainsin Q and converges to the origin.

Proof: With in Q, ¢(x)becomes a Lyapunov function for
the system (19) with control law (20). This theorem is fol-
lowed from the Lyapunov theorem (Chang and Peng, 1972;
Hahn. 1967). |

It is remarked that system (19) with control law (20) re-
mains stable in the case of a 50% reduction in controller gain
(Glad, 1987) and hence the true attraction region may be lar-
ger than . We can obtain a robust control law by choosing
a specific ®(¢(x), f,,(x)) and sonving the Hamilton-Jacobi
equation (21). If f,(x) is of the form f,(x)= g(x)r(x),
then we can choose

D), fu(x)
= % Vorx) g(0R™ gtx) Vxx) + % Hx) Rr(x)

and we have
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Vo' f(0)=Y(1-85Ven" g(DR ' g(x) Voix)'

+m(x)+ —;-r(x)r Rr(x)=0,

The above equation satisfies condition (22) automatically
and may have a positive definite solution around the origin.
Furthermore it can be solved via the standard series solution
method for the nonlinear optimal regulation problem (Lukes,

1969). This uncertainty is included in the matching conditions.
For general uncertainties, we choose

. 1 .
DP(x), f,(x) = KIS X Vo(x) + ng(x)fw(fn(x))J

which is an extension of the linear quadratic problem of sec-
tion II. Then equation (21) becomes

Vo) (f(x) %x) - ViVe(x) g(x0)R g(x)" Vo(x)
+m(x) +2—15—f,) 0 V(S (1)) = 0.

We solve equation (24) by the power series method. For this,
we assume that all nonlinear functions are expanded as

f)=Ax+ f 2+
fo(¥)=Dx+ 57 (x)+-
g =B+gVx)+
m(x)=x"Qx+mP (x)+--

and the linear quadratic problem of equation (7) has a solution
P. Under the assumptions that the linear quadratic solution
exists, the local power series solution of equation (24) may
exist. But its proof would require more elaborate study as in
the nonlinear optimal regulation problem (Lukes, 1969).
Assume that the solution of equation (24) is represented as

o) =x" Px+¢P () +---.

Then we have the equation (7) for P and

V¢(k)(x)7.(A§ “BR_IBTP)X+$XTDTV¢U<)(Dx)
=r'"(x), k=34,

there #'®(x) is a function of all known and previously cal-
culated variables.
Theorem 7 : Define DV~ such that

DU o (Dx)”_”

where x1/™ s a lexio-graphic listing vector for (j-I)th order
polynomials of x (Brockett, 1976). If (A5 —BR™'B P)is
stable and A,(D(A; —~ BR™'B" P)™)2, (DY) 2 —25 , for all i
and /, then the solution of (25)for j exists.

Proof: Let Vg¢'/'(x)= P71/~ (Yoshida and Loparo,
1989). Equation (25) becomes
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_ e 1 o
xT (A5 —BR7'BT p)T P11y (T pT plu-ll ply-141J-1]
26
= xTHU—IJxU*”
where x” HUUxU-1 = 5 (4) . Hence we have

(As — BR™'B" p)T pli-ll +%DTP“’”D“‘” - gl

Under the above condition P'/7" can be calculated (Bartell
and stewart, 1972). [ ]

The above condition is easy to check because it depends
only on the linearized terms. Higher order terms can be calcu-
lated with some symbolic operation of multivariable polyno-
mials and solving systems of linear equations (Lee, 1990). To
use the series of ¢(x), it is truncated at some order and the
region of attraction of the truncated control law should be
determined.

IV. Reducing control costand magnitude of feedback
gain

High feedback gain is not recommended when unmodeled
high frequency parasitic dynamic exists. So it would be impor-
tant to reduce the controller gain while maintaining the ro-
bustness. Peterson and Barmish (1987) studied properties of
the lowest gain robust controller. But such a controller is very
hard to obtain. The robust controller design method of Chang
and Peng (1972) sometimes gives a much lower controller
gain than that of section II. Here we reformulate their scheme
with the matrix square root to obtain some analytical results
and more attractive numerical methods.

Equation (3) combined with (4) can be written as

PA+ATP-PBR'BTP+Q+U =0 (26a)
U?-4% (PD+DTP)* =0 (26b)

where U is symmetric and positive semi-definite. We solve the
equation (26) iteratively as

P A+ATR, ~P.BR'BP, +0Q
+qy[(R.D+D"P,)*1" =0, P, =0

where [.]}é means the principal matrix square root (see Ap-
pendix for calculation by the transformation method). Equa-
tion (26b) is much easier to manipulate than the original one
of Chang and Peng (1972). But it is still difficult to prove the
convergence of its iterative scheme (27) except for a limited
class of D. For example, if D is symmetric and orthogonal
(that is, D*=1 and D=D" ), then the sequence P, is
non-decreasing. So it will converge if a positive definite solu-
tion of (26) exists. Utilizing the solution of equation (7), fol-
lowing bounds for the sequence P, of iterative scheme (27)
are obtained.
Theorem 8: Assume that D is symmetric. If there exist

& such that

O (DW© 2 (P +G2(BN[GL(B) <6 (28)

there P; is the solution of (7) and P, is the first iteration of
(27), then the sequence P, of (27) is bounded between A
and FP;.

Proof: For any P between P <P <P;, inequality (28)
implies that

2
4%, (PD*P + DP?D)y< §2P? + ‘;—";DpozPD .

2
Hence we have g% (PD+D'P)2<(6P+3% pTpp)? .
Therefore, from the inequality about the matriQ square root
(Bellman, 1965), we have

2
gul(PD+DTP)* V< (8P + ﬂaﬁpfpz)) .

Theorem 8 follows [ |

Theorem 8 shows that, for some uncertainties, iteration of
(27) is bounded and the solution of (26) is not greater than
some Fj, a solution of (7). Since ©,,(P)is independent on
qy and o, (Ps) goes to some constant as g,, decreases,
we may always find § which satisfies the condition (28) for
sufficiently small g,, . Because we can differentate equation
(26b) with respect to g,, and P, we can also apply the con-
tinuation method to the equation (26) as

P, (As -BR'B"P)+(As -BR'B"P)" P,
+PBR'B'P +0+U,, =0

UnUi +UUsp =i 4 [Py D+ D" P )P D+ DT R,)
+(B,D+D" P )P, ,D+D" P, )]

—2qy 44y (P,D+D"P)* =0

u k1 =9u i + 9y -

Continuation will be used to prevent convergence problems of
the iterative scheme (27) and to find the maximum possible
g, - The method can be also extended to treat some nonlinear
perturbations. We will illustrate it with a simple example in
the following section.

V. Examples
Here we compare schemes by applying them to the well-
known Van der Pol oscillator problem.
Example 3: Consider the dynamical system

X =X

. 2
Xy ==X+ Xy —gx{x, +u

with a cost functional

J(x(tg)u(e) = j (x2 + u?ydr.

Let gy =1. With restricting x as |x|<1, we can obtain
three linear robust control laws as
(from equation (4))

42957 4.2044
u = —(42957x, +4.2044x,)

[5.1535 .42957}
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(from equation (5))

_[5.2480 42705
“|.42705 4.2300

u = —(.42705x, +4.2300x,), for 6 =0.2

(from equation (6))

2.0547 5.0762
u=—(2.0547x, +5.0762x,), for 6§ =0.6 -

B [12.219 2.0547]

For this problem the cost and feedback control gain ob-
tained from the equation (6) is larger than those of the other
two.

Two nonlinear robust control laws are computed as

(from equation (23))

#(x) = 4.9491x2 + 89898x,x, + 4.4079x3 +
16600x? +0.x7 x, +.40661x{ x5 +.27786x; x3 +
12714x2 53 +.03614x,x3 +.00500x5 +-+-

u(x) = —(.11949x, + 4.4079x, +0.x; +

A0661x]x, +.41679x; x3 +.25429x7 x3 +
.09034x,x5 +.01501x; +---), for §=0.5,

5.8 W'_

X2 3
4
4 9.

(¢

C
N\

——
[
-5.@ a_j.o 5.0

5

-5 . @ —i

Fig. 1. Attraction regions for the system of Example 3.
a) for the linear robust controller of equation (6)
with  50% feedback gain reduction tolerance, b) for
the linear robust controller of equation (6), c¢) for
the nonlinear robust controller of equation (24)
(truncated at the 5-th order).

(from equation (24))

@(x) =5.1602x7 + 2.2802x,x, +3.2103x; +
1.4458x¢ +1.0133x] x, +1.8585x x3 +.94377x] x3 +
30275x2x5 +.05689x,x; +.00484x5 + -

u(x) = —(1.1401x, +3.2103x, +.50667x; +
1.8585x!x, +1.4157xx3 +.60550x7 x3 +
14223x,x3 +.01451x3 +--), for § =06
Attraction regions for the linear controller of equation (6) and
the nonlinear controller of equation (24) (truncated at the fifth
order) are shown in Fig. 1. For this problem, the nonlinear
controller has much larger attraction region and gives lower
control cost than that of the linear controller.
Example 4: Consider the dynamical system (Glad, 1987)
. 2
X =Xy +gx;

Xy ==X, +U
with a cost functional
J(x(ty)u(e)) = Jm ()(I2 +u’ )dr -
ty
Let g, =1. Restricting x, as |x|<1, we can obtain a lin-
ear robust control law from equation (6) as

19725 636
| 636 3.1014
u =—(6.36x, +3.1014x,), for § =1.0,
The nonlinear robust control law is computed from equation
(24) as
O(x) = 6.4641x}7 +7.4641x,x, +2.73205x; +
8.71474x] +10.2065x; x, +5.03661x] x3
+1.17648x x3 +0.107655x3 +---

Fig. 2. Attraction regions for the system of Example 4.
a) for the linear robust controller of equation (6)
with 50% feedback gain reduction tolerance, b) for
the linear robust controller of equation (6), c¢) for the
nonlinear robust controller of equation (24) (trun-
cated at the 3-rd order).

u(x) =—(3.73205x, +2.73205x, +5.10323x;" +
5.03661x2x, +1.76472x/ x3 + 21531 1x; +--),
for 6§ =2.0.
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Attraction regions for the above controllers are shown in Fig.
2. For this problem, the nonlinear controller has a smaller
attraction region but gives a much lower control cost than that
of the linear controller.

VI. Conclusions

Guaranteed-cost control methods of Chang and Peng (1972)
and Kosmidou and Bertrand (1988) have been re-examined for
designing a robust controller. We obtained a new convergent
iterative scheme modifying the iterative scheme of Kosmidou
and Bertrand. By applying cheap control theorems to this
scheme, we obtained some explicit results about existence of
the robust controller. In particular we obtained systems which
can be stabilized for an arbitrarily large uncertainty bound,
which are different from those of the matching conditions.
Since the cheap control theorems used are based on earlier
papers (Sannuti, 1983), our results can be improved by more
recent results about cheap control (Saberi and Sannuti, 1989).
A continuation scheme was also proposed, which was espe-
cially useful for finding the maximum possible uncertainty
bound as well as the robust controller. The method was ex-
tended to nonlinear systems and an easily implementable se-
ries solution was obtained.

Convergence of the iterative scheme of Chang and Peng
(1972) is hard to prove. However, their method is still useful
for some systems which contain unmodeled high frequency
parasitic dynamics or suffer from stochastic noise, because it
sometimes gives much lower feedback gains. The scheme was
reformulated so that some analytical results and more reliable
numerical methods including the continuation method could
be applied.

The Lyapunov equations and the Riccati equations were
solved by the Schur transformation method (Bartell and Stew-
art, 1972; Laub, 1979). These may also be solved by the reli-
able matrix sign function method (Roberts, 1980; Bierman,
1984; Shich et al., 1987) without rather lengthy programs to
find Schur vectors. A general program for the power series
solution of the nonlinear problems was developed with sub-
routines using symbolic algebraic manipulation of multivari-
able polynomials (Lee, 1990). All programs were written in
FORTRAN. For low dimensional systems, we obtained robust
controllers very efficiently. However, a fast and reliable
method for solving the equation

PA+ATP+D'PD+0Q=0

would be required to speed up the calculations for large di-
mensional systems.
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Notations
A;(e) : eigenvalue of a matrix.
7 ,,(»): minimum singular value (minimum absolute eigen-
value) of a matrix (Kailath, 1980).
Oy (#) : maximum singular value(maximum absolute ei-
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genvalue) of a matrix

O(e): order of large O. For example, P=0(g) means
that P/e goes to some matrix as £ goes to zero

o(e) : order of small 0. For example, P =o0(c) means that
Ple goestozeroas g goesto zero

diag(e) : diagonal matrix p<QP<Q): P~Q is positive defi-
nite (semi-definite)

As: A+6/21

V¢(x): gradient of ¢(x) about x.

R (x): j-th order terms in the power series expansion of
an analytic function A(x)

x/1: lexico-graphic listing vector for multivariable poly-
nomials of x (Brockett, 1976; Yoshida and Loparo, 1989)

DU a matrix such that DUxl/! = (Dx)l).

(-)}/2 : principal square root of a matrix (Bellman, 1960)

Appendix
(Principal square root of a positive semi-definite matrix)
We calculate the principal square root of a given positive
semi-definite matrix A by the Schur transformation method.
Since A and B= A% have the same eigen structure (Bellman,
1965), We have

B*=4

where A=SAS'and B=SBS™'. If a transformation S is
chosen as Schur vectors, A and B become upper triangular
matrices and the upper triangular matrix 8 can be calculated
as

~

by, =(@,)", i=12,n

i

for k=1 to n-1

i+k~1
b =iy — Zbijb,'f+k )/(bii b i )s

J=i+l

Because B satisfies that B> = A and the eigenvalues of B are
all non-negative real values, B becomes the principal square
root of A. All matrices used are real, because A is symmetric
and positive semi-definite.
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