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Receding Horizon FIR Filter and Its Square-Root Algorithm
for Discrete Time-Varying Systems

Pyung Soo Kim and Wook Hyun Kwon

Abstract: A receding horizon FIR filter is suggested for discrete time-varying systems, combining the Kalman filter with the reced-
ing horizon strategy. The suggested filter is shown to be an FIR structure that has many good inherent properties. The suggested filter
is represented in an iterative form and also in a standard FIR form. The suggested filter turns out to be a remarkable deadbeat ob-
server that is often robust against system and measurement noises. It is also shown that the suggested filter is an unbiased estimator
irrespective of any horizon inittal condition. For the amenability to parallel and systolic implementation as well as the numerical
stability, a square-root algorithm for the suggested filter is presented. To evaluate performance, the suggested filter is applied to a
problem of unknown input estimation and compared with the existing Kalman filter based approach.
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L. Introduction

Recently, Kwon et al. have suggested optimal finite impulse
response (FIR) filters for state estimation in discrete-time
systems [1][2]. It is known that the optimal FIR filter provides
several advantages over existing optimal filters such as the
Kalman filter [3], which has an infinite impulse response (IIR)
structure. Due to the FIR structure, this filter is known to be
often robust against temporary modeling uncertainties and
against numerical errors that may degrade the performance in
the case of the IIR structure filter [4][5].

However, general readers might find it hard to understand
the derivation of complicated filter equations since the optimal
FIR filter is obtained from a Fredhelm integral equation with
some complex boundary indices. Moreover, since existing
optimal FIR filters [1][2] have been presented basically for
systems without external control inputs, it is necessary to ex-
tend the derivation to systems with control inputs if we intend
to use them in feedback control problems.

To improve the above drawbacks, the receding horizon
(RH) FIR filter for discrete time-invariant systems was devel-
oped recently by combining the well known Kalman filter
with the receding horizon strategy [6]. Since it comes from a
modification of the well known Kalman filter algorithm, it is
easy to understand the filtering algorithms. In addition, since
the RH FIR filter deals with stochastic systems with control
inputs, it is possible to apply this filter to feedback control
problems. Furthermore, in recent, the RH FIR filter has been
shown to be a best linear unbiased estimation (BLUE) filter
with FIR structures, which processes the finite measurements
on the most recent horizon linearly, doesn't require a priori
statistics information of the horizon initial state and has the
properties of unbiasedness, minimum variance and efficiency
[7]. However, since time-varying systems are quite often used
for many practical applications such as detection, tracking and
guidance in the aerospace industry, the RH FIR filter for time-
varying systems is also very necessary.

Therefore, in the current paper, the RH FIR filter for dis-
crete time-varying systems is suggested. The RH FIR filter
will be first presented in an iterative form and then in a stan-
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dard FIR form similar to existing optimal FIR filters. The
standard FIR form of the RH FIR filter in the current paper
provides simpler algorithms for obtaining filter gains than
existing optimal FIR filters. It is shown that the RH FIR filter
becomes a remarkable deadbeat observer when applied to
noise-free systems. It is also shown that the RH FIR filter is an
unbiased estimator irrespective of any horizon initial condition.
The suggested RH FIR filter would be a BLUE for discrete
time-varying systems.

In the recent decades, square-root algorithms for state
estimation have been preferred for implementation of the
Kalman filtering and smoothing formulas [8][10]. They have
been found to have several advantages in terms of the
numerical stability which improves computational reliability,
and the amenability to parallel and systolic implementation
which overcomes computational burden. Therefore, a square-
root algorithm for the suggested RH FIR filter will be
established in the current paper.

IL. RH FIR filters
Consider a linear discrete time-varying state-space model
with control inputs

X = Axg + By +Gowy, (n
Y = Coxp + v, 2)

where x, € R" is astate,and v, € R' and y, e RY area
known input and a measured output, respectively. The initial
state x, is a random variable with a mean x,, and a co-
variance X, . The system noise w, € R” and the measure-
ment noise v, € RY are zero-mean white Gaussian and mu-
tually uncorrelated. The covariances of w, and v, are de-
noted by Q, and R, , respectively. These noises are uncor-
related with the initial state x, . Matrices are assumed to be
bounded for simplicity.

It is well known that the following Kalman filtering algo-
rithm provides a minimum variance state estimate ¥, , called
the one-step predicted estimate of the system state x, with
control inputs [3]:

R = A%+ [APRC] (R +CPCOH ' Uy, -Cx)
+Byu,,

3)
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Py = AP +CIR'C) Al +G,0,G/ )

where X, =X, ,and P is the error covariance of the esti-
mate %, and P, =X, .

When the covariance of the initial state is very large but not
infinite, one usually uses an information filter form [8],
assuming that A, is nonsingular. We can define

Q =P Q =Q+C'R/C,
if P, is nonsingular. Then, the equation (4) is written as
Q. =+ ATQAGOG T ATQA! )

where Q, =Z;01. Therefore, the information form of the
Kalman filter (3) can be written as

X = AR HCIRICOHT RS,
+A(PT+C/RI'CH'CIR vy, + B, (6)
=AQ,'Q. %, +AQQ,CIR'y, +B,u,.

The filter algorithm (6) uses all measurements from the initial
time k, to provide the state estimate at the present time & .

We now introduce the receding horizon strategy to the
above filter (6). The RH FIR filter at the present time & uses
finite measurements on the horizon [k—N,k] and discards
past measurements outside the horizon. We shall write
ky =k—N for compactness. We will call the state at &,
the horizon initial state, denoted by x, . As mentioned pre-
viously, the horizon initial state X, 1s assumed to be un-
known and thus the horizon initial condition fc,w is anything
at all. It follows from this that the horizon initial state must
have an arbitrary mean and an infinite covariance, X ky =0
We rederive the filter (6) at the present time & from the ho-
rizon initial time &, under the unknown horizon initial state.
The filter at the time k, +{ on the interval 0<i< N -1
will be denoted by %, ., . The filter (6) on the horizon
[k, ,k] then becomes

~ _ -1 ~
KXy +ivle = AkN+iQkN+iIka,\v+i\k Xy +ilk
-1 T -1
F A i Ly et Sk Chyy +i Ry i Vi i )]
+ By ity iy 0SISN-1
where the horizon initial condition ikvlk is anything at all
and

_ Ty -1 -
Qi =[1+A ik Ay i Oy 4 Qi Gy i |

(8)

~-T O -1
Ak,v + Qk NIk AkN +

with the horizion initial condition €2, , =0.

In discrete time-varying systems, it is known that the non-
singularity of Q, ., is guaranteed by uniformly complete
observability of the system [11]. That s, Q, .u becomes a
positive definite matrix for all i2/, if {A,,C,} is uni-
formly completely observable. In the filter (7), we can thus
note that €, ., may be singular on the interval OSi<l;)
with Q, , =0. In this case, Q, .; can be singular, thus
the filter (7) cannot be defined during this interval. We can
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avoid this problem by pre-multiplying both sides of (7) by (8)
to obtain

QkN itk Ky +i+1lk

_ TS 4 -
=[I+A Qi Ay 1G4y Gy 4i 0
4 R roo )
Ao nil Qi Xy + CroyaiRiywi iy i

oy -
+ kank AkN By ik i 1

with the horizon initial condition Q; %, \ =0. Since the
inversion of matrix €2, ;. disappears in (9), the singularity
problem does not occur. Then, in the following theorem, the
RH FIR filter is derived from (9) and can always be defined
irrespective of the singularity, whereas the filter (7) cannot.
Theorem 1: Assume that {A,,C,} is uniformly com-
pletely observable. When the horizon initial state X 18
assumed to be unknown, the RH FIR filter x,, for discrete
time-varying systems is given forany N 21/, as

"lek = Q;,L ﬁm (10)
where 71j,,, is obtained from the following iterative forms:
Tegsiok =LA QAL LG Q0 Gl T AT
nkNﬂHIk Y Rl VAT VA S A SVEY] QkN+: ko +i g +i
o T ~I PaY —1
(Mg sie +CryaiRiy et iy + Qysite Aty i Bry ity i 1 (1)
0<i<N-1

with the horizon initial condition 7, ., 1{i=0}=7, , =0
In the above theorem, (11) is obtained from (9) using the sub-
sidiary estimate defined as 7, . =, %, . and the
horizon initial condition 7}, =, % |, . Fig. 1 shows the
concept of suggested RH FIR filter to obtain the state estimate
X, in (10) at the present time & .

- HorizonN

R >
Singular Nonsingrular
Region Region

‘ of ik of Cx +ik i

Unknown horizon|

Xk ik

initial state X«

A= Qi few =0

|
|
‘k—-kN k

Receding
Fig. 1. Concept of RH FIR filter.
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Although time-varying systems are often used in many
areas such as detection, tracking and guidance in the aerospace
industry, time-invariant systems are also used because of their
simplicity. We therefore derive the RH FIR filter for time-
invariant systems [6]. In time-invariant systems, the discrete
Riccati equation (8) defined on the horizon [k, ,k] are shift
invariant and thus Q ky+ix 1S independent of &, denoted by
Q,;. In this case, the horizon initial condition Q kyik €an be
represented as Q. €, is obtained from (5) on the interval
0<i<N-1 as
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Q. =+ ATQATGOG"T'ATQA™, Q,=0. (12)

It is noted that Q, >Ofor any N >n. Then, the RH FIR
filter x,, for discrete time-invariant systems is given for any
Nzn as

X = Q;vlﬁklk (13)
where 17}, is obtained from the following iterative forms:

Tyt = U+ATQA"GEG 1A
_ (14)
(Mg +ite +CTR'kaN+i +QA™B Uy, 4il

with the horizon initial condition #, , =0.

The suggested RH FIR filter provides several advantages. It
is easy to understand since it comes from a modification of the
well known Kalman filter algorithm. The suggested filter can
always be defined irrespective of singularity problems caused
by the infinite covariance of the horizon initial state. Since the
suggested filter deals with stochastic systems with control
inputs, it is possible to apply this filter to problems of feed-
back control. We can also expect that the suggested filter is
often robust against temporary modeling uncertainties and
against numerical errors that may cause a divergence phe-
nomenon in the standard Kalman filter, since it utilizes only
finite measurements on the most recent horizon.

IIL Stadnard FIR form of RH FIR filter
The RH FIR filter (10) is an iterative form with the zero
initial condition 1 gy =0 . It is actually an FIR structure and
thus can be represented in a standard FIR form similar to ex-
isting optimal FIR filters [1][2].
Define a transition matrix as

_ | Ty-1 4-T
@, = U+A7QuA'GOG T A,

J+Lli

D=1, ky<ky+i<j<k-1

(15)

where S_i]-lk is obtained from (8). It is noted that @ ;; in (15)
is a function of k since j varies on the interval [k, k].

Attime &k, (11)becomes

N-1 ; 1 Nl 1
Mk = Z‘Dk,iCkN+iRkN+i)’kN+i + zq)k,iQkN+iIkAkN+inN+iukN+i‘
i=0

i=0

Since Q,, >0, pre-multiplying both sides of by Q;‘lk and
defining filter gains H,;,L,; as

H; = Q;,]k q>k,iCkTN+iRI:,\],+i Ly =Q;|Ik q)k,iQkNHIkAl:,\],HBkNH

yields a standard FIR form as

N-1 N-

X = ZHk,i}’kN+i + ELk,i“kN+i~ (16)
i=0 =0

This is summarized in the following theorem.

Theorem 2: Assume that {A,,C,} is uniformly com-
pletely observable. When the horizon initial state x; , is
assumed to be unknown, the RH FIR filter X, can be repre-
sented in a standard FIR form (16) forany N 21, . |

The RH FIR filter (13) for time-invariant systems is now
represented in a standard FIR form [6]. Due to the shift invari-
ance of Q; in (12), a transition matrix can be defined on the

finite interval [0,N] instead of [ky,k] as

@, =U+A7Q,A"GoG""'AT D,

®,. =1, 0<i<j<N-1

ii

a7

where Q ; 1s obtained from (12). At time & , (14) becomes

N-1 N-1 —
N = Z‘I’N,iCTR_I)’kNﬂ‘ + Z<DNJ‘QA-IB Wi

i=0) i=)

Since €, >0, pre-multiplying both sides by Q;l and de-
fining filter gains Hp,,Ly;as

HNvi = QX,I(DN,,-CTRA], LN‘,' =QTV]CDN,1’§£AAIB

yields a standard FIR form as

Nl N-1
X = ZHN,iykN+i+2LN‘iukN+i' (18)
i =0

=0

As shown in Fig. 2, for time-varying systems, the computation
of ®,, is repeated for all horizons. However, for time-
invariant systems, since Q, is shift invariant, ®, . is de-
termined only on the interval [0, N]uniquely. This means that
filter gains H,,,L,; require computation only on the in-
terval [0,N] once and are time-invariant for all horizons.

i

Nl-oo oo
g g
Eq.(17) —» Eq. (15) —»
,.’ .' ,.0 '.

‘1% —>¢, (131__—, q;
< —
- -
0 N k-N *

Fig. 2. Computation procedure ®,, and @, .

The standard FIR form of the suggested filter differs in
several respects from existing optimal FIR filters [1][2]. It
provides a predicted estimate while existing filters provide a
filtered estimate. It contains external control inputs unlike
existing ones. Since the suggested RH FIR filter is derived
from the Kalman filter, its standard FIR form provides simpler
algorithms in obtaining filter gains H,;,L, ;or Hy,;, Ly;
than existing ones. Thus, the computational burden of the
suggested filter is reduced in comparison to existing optimal
FIR filters.

IV. Properties of RH FIR filter
In this section, it will be shown that the RH FIR filter has
the deadbeat property and the unbiasedness property. In the
following theorem, it will be shown that the RH FIR filter
becomes a remarkable deadbeat observer when applied to
noise-free systems.
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Theorem 3: Assume that {A,,C,} is uniformly com-
pletely observable. Then RH FIR filters (10) and (16) for dis-
crete time-varying systems are exact for noise-free systems
for forany N 21;.

Proof: Consider a linear discrete time-varying state-space
model (1) and (2) when there is no noise as

X = AX +Buy, v, = Crxy .

Since Q,, ,, =0, Qk~+i|k5&kN+ilk = Qi Xey 4 =0 holds
for i=0 irrespective of ’QkNIk and x, , . Assume that
Qu, viXey+ik = Qpy ik Xey - holds for i. Then, from (9),
we can show that Q X . =, ciuXe, - holds for
i+1 as follows:

Qk~+i+llk'£k~+i+llk

=[1+A;N QkN+.|kAkN+szN+iQkN+kaTN+i]_lA/:,ja,i
[QkN+ilkka+iIk +Ck,v+iRl:,\l,+.')’kN+i +§k~+ilkAk—,l,+inN+iukN+i]

=[1+Ak_;“ﬁkNHIkAk_Al,+inN+iQkN+leTN+i]-l Ak_NT+i§kN+iIk Ak_,,l,+i
(At +iXegsite + Biy+ithiy+i]

=Q ik Xy +i+llk.

Therefore, QL uXe, v = Ly vin¥ey - holds  for all
i20. Since Q,, >0 at the present time k, X, =x,, .
This completes the proof. |
It is noted that the RH FIR filter for time-invariant systems has
the deadbeat property forany N 2n [6].

This deadbeat property indicates the finite convergence time
and the fast tracking ability of the RH FIR filter. Thus, we can
expect that the suggested filter would be appropriate for quick
estimation and detection of signals with unknown times of
occurrence, which arise in many areas such as fault detection
and diagnosis of various systems, maneuver detection and
target tracking of flying objects, etc. It is noted that the sug-
gested RH FIR filter can be used as a very special deadbeat
observer for noise-free systems. In this case, it is believed that
this deadbeat observer is often more robust against system and
measurement noises than existing ones [12][13] which did not
consider the effect of these noises.

In the following theorem, it will be shown that the RH FIR
filter with unknown horizon initial state is an unbiased estima-
tor irrespective of any horizon initial condition.

Theorem 4: Assume that {A,,C,} is uniformly com-
pletely observable. Then RH FIR filters (10) and (16) for dis-
crete time-varying systems are unbiased for any N 2/, .

Proof: This is proved directly from Theorem 3. [ |
It is noted that the RH FIR filter for time-invariant systems has
the unbiasedness property for any N > n [6].

V. Square-root algorithm of RH FIR filter
So far we have derived the iterative form (10) and the
standard FIR form (16) of the suggested RH FIR filter for
discrete time-varying systems. It can be seen that the standard
FIR form of the RH FIR filter for large N requires a large
number of multiplications and a large memory for filter gains.
That is, the iterative form has advantages in computational

burden and memory requirement compared with the standard
FIR form. For this iterative form (10) of the RH FIR filter, we
will present a square-root algorithm for easier parallel and
systolic implementation as well as more reliable computation .

For convenience we first introduce some notational conven-
tions. When a positive definite matrix X is given, a square-
root factor X “/?will be defined as any matrix in a such way
that X =(X'*}X V)T, In most applications, such square-
root factors can be made unique by insisting that they be trian-
gular. For convenience we shall also write (X 12 )T =x7? ,
(X I/2)‘l = X‘”z, (X '”2)7 =xT7, Thus, let us note the
expression X =X"2xT"?2  x'=x""2xT"? We also
assume that a unitary operator ©® is applied to the X so as
to get some special form of a matrix ¥ such as X@ =7,
then we shall call the X a pre-array and the Y a post-array.

The matrices £, ., propagated by the discrete time-
varying Riccati equation (8) can lose their theoretically re-
quired positive-definiteness because of the accumulation of
numerical errors. In some situation, even the diagonal entries
of Q ., may become negative, resulting in absolutely
meaningless state estimates. To avoid such circumstances, it is
widely recommended to propagated square-root factors,
Q}(;\zﬂ,k While numerical effects will still be present,

}(Cﬂlk X QkN “a ) 1s much more likely to lead to a positive
definite matrix since in fact the diagonal elements of the prod-
uct will now always be positive. Therefore, a square-root algo-
rithm provides the numerical stability that improves computa-
tional reliability. It is also clear that the computation of the
state estimate X, consists mainly of the time-consuming
computation of €, ;. In this case, the propagation of
square-root factors Q}(/N * . has the advantage of the amena-
bility to easier parallel and systolic implementation that over-
comes computational burden. It is noted before that the RH
FIR filter is often robust against numerical errors due to its
FIR structure. Therefore, we can mention that the square-root
algorithm for the RH FIR filter is more needed for the amena-
bility to parallel and systolic implementation than for the nu-
merical stability.

We now present a square-root algorithm for the RH FIR
filter by combining the information form square-root algo-
rithm [9] for the Igalman filter with the receding horizon strat-
egy. We define 1, . EQL’NM ky+ik - Applying inner- and
cross-products of the array rows, we can establish the square-
root algorithm for the RH FIR filter (10) with control inputs
on the horizon [k, ,k] as

-T T ~T/2
_AkN+iCk,\ +iRkN+i

-7 T/2
ka+lAl(v+leN+lRl(N+l

1T
Q

ke +i

T T T T/2
(ykN+/ ki ok ’M“C"A“)ka“
- T/ﬁ
_AkVHQkNHIk 0
T2 T2
Q"N* GkN+1AkN+IQkN+1Ik 1 o
x kp+i
T T -T T/2
ukNﬂBkNﬂAkNHQk +ilk +nkNﬂlk 0
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= , 0<i<N-1 (19)

with the horizon initial condition 7, = Q|2 %\ =0. Tt
is noted that *“* ” indicates a redundant entry and ©, ., is
any orthogonal rotation, @kNﬂ@fNH =1, that upper-
triangularizes the first two rows of the pre-array.

It can be seen from (19) that an intermediate variable to
compute the real state estimate X, can be found from the
entries of the post array by solving the triangular system

Tiw,.ﬂlk. At the present time k , we can obtain the real state

estimate X, = Q7" y M., Wwhere the available value is given.

kp +ilk
Therefore, it can be stated that the square-root algorithm for

the RH FIR filter is amenable to parallel and systolic imple-
mentation since the state estimate is found as products of
quantities that are available from the post-array.

V1. Application to unknown input estimation

It was mentioned previously that the RH FIR filter has a
deadbeat property, which means the finite convergence and the
quick tracking ability of the RH FIR filter. It is also known
that the increase of the number of observations for a detection
decision will increase the detection delay in detecting a signal
with unknown time of occurrence [14]. Therefore, it may be
expected that the unknown input estimation using the RH FIR
filter can provide quicker estimation than the approach using
MR filter such as the Kalman filter that doesn't provide a
deadbeat property.

Therefore, in this section, the RH FIR filter based unknown
input estimation and the Kalman filter based Friedland's ap-
proach in [15] are compared. Two approaches are applied to
the problem of the following DC motor system:

[—o.ooos —0.0084} [0.1815]
Xewl = X + 1

0.0517 0.8069 1.7902
(20)
0.0129 0 0.0006
+ bt Vi
—-1.2504 0 0.0057
1o + 00 + (28
= X V,.
Y o 1™ 01 P 3

When the unknown inputs p, =[pi pf 1 =p., +6,, with
a random-walk type are treated as auxiliary states, the system
(20) and (21) can be augmented as (1) and (2) of the fourth
order state space model with state variable x, =[x, 1
and system noise w, =[wf 5{]7'. Then, for the augmented
system, the RH FIR fiiter based approach and the Kalman
filter based Friedland's approach in [15] are implemented for
the unknown input estimation.

In the simulation, the first unknown input p'k is modeled
as step function that changes at k=100 with the magnitude
of 0.5 and the second one pf is modeled as zero. The horizon
length is taken as N =10 . As shown in Fig. 3 and 4, the RH
FIR filter based approach has a quicker estimation perform-

ance than the Friedland's approach at time of unknown input
occurrence. In addition, in the RH FIR filter based approach,
the first constant unknown input does not affect the estimate
of the second unknown input. However, in the Friedland's
approach, the first constant unknown input affects the estimate
of the second unknown input.

Besides this application, the RH FIR filter for time-varying
systems might be useful for various applications which require
time-varying system. In time-invariant systems, the RH FIR
filter has turn out to be a useful practice for solving problems
of filter divergence due to modeling uncertainty [6], for esti-
mating signal with quasi-periodic components [16], etc.

VII. Conclusion

Some contributions of the current work can be briefly sum-
marized as follows. The derivation of the suggested RH FIR
filter is easier to understand than previous results since it
comes from a modification of the well known Kalman filter.
The iterative form of the suggested filter can always be ob-
tained irrespective of singularity problems caused by unknown
information about the horizon initial state. It has been shown

0% | ot e

astirnate ot p2 il
ST I, )

0o w0 200 250 300 350 400 450 500
Time

Fig. 3. Result of RH FIR filter based approach.
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Fig. 4. Result of friedland’s approach.
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that the suggested iterative filter can be represented in a stan-
dard FIR form, which provides simpler algorithms for obtain-
ing filter gains than existing optimal FIR fiiters. The suggested
filter includes a control input term and thus can be applied to
feedback control problems. As a by-product, we obtain a re-
markable deadbeat observer, which indicates the finite con-
vergence time and the fast tracking ability of the suggested
filter. The square-root algorithm for the suggested filter will
provide many advantages with respect to the amenability to
parallel and systolic implementation as well as with respect to
the numerical stability.
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