Minimally Complex Problem Set for an Ab initio Protein Structure Prediction Study

  • Kim RyangGug (Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National University) ;
  • Choi Cha-Yong (Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National University, School of Chemical Engineering, College of Engineering, Seoul National University)
  • 발행 : 2004.10.01

초록

A 'minimally complex problem set' for ab initio protein Structure prediction has been proposed. As well as consisting of non-redundant and crystallographically determined high-resolution protein structures, without disulphide bonds, modified residues, unusual connectivities and heteromolecules, it is more importantly a collection of protein structures. with a high probability of being the same in the crystal form as in solution. To our knowledge, this is the first attempt at this kind of dataset. Considering the lattice constraint in crystals, and the possible flexibility in solution of crystallographically determined protein structures, our dataset is thought to be the safest starting points for an ab initio protein structure prediction study.

키워드

참고문헌

  1. Anfinsen, C. B., R. R. Redfield, W. L. Choate, J. Page, and W. R. Carroll (1954) Studies on the gross structure, crosslinkages, and terminal sequences in ribonuclease. J. Biol. Chem. 207: 201-210
  2. Moult, J. (1999) Predicting protein three-dimensional structure. Curr. Opin. Biotechnol. 10: 583-588 https://doi.org/10.1016/S0958-1669(99)00037-3
  3. Sanchez, R. and A. Sali (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc. Natl. Acad. Sci. USA 95: 13597-13602 https://doi.org/10.1073/pnas.95.23.13597
  4. Anfinsen, C. B. (1973) Principles that govern the folding of protein chains. Science 181: 223-238 https://doi.org/10.1126/science.181.4096.223
  5. Gummadi, S. N. (2003) What is the role ofthermodynamics on protein stability. Biotechnol. Bioprocess Eng. 8: 9-18 https://doi.org/10.1007/BF02932892
  6. Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne (2000) The protein data bank. Nucleic Acids Res. 28: 235-242 https://doi.org/10.1093/nar/28.1.235
  7. Jacobson, M. P., R. A. Friesner, Z. Xiang, and B. Honig (2002) On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol. 320: 597-608 https://doi.org/10.1016/S0022-2836(02)00470-9
  8. Shimada, A., O. Nureki, M. Goto, S. Takahashi, and S. Yokoyama (2001) Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase. Proc. Nat. Acad Sci. USA 98: 13537-13542 https://doi.org/10.1073/pnas.231267998
  9. Urbanova, M., R. K. Dukor, P. Pancoska, V. P. Gupta, and T. A. Keiderling (1991) Comparison of alpha-lactalbumin and lysozyme using vibrational circular dichroism. Evidence for a difference in crystal and solution structures. Biochemistry 30: 10479-10485 https://doi.org/10.1021/bi00107a016
  10. Rodriguez, R., G. Chinea, N. Lopez, T. Pons, and G. Vriend (1998) Homology modeling, model and software evaluation: three related resources. CABIOS 14: 523-528
  11. Tsodikov, O. V., M. T. Jr. Record, and Y. V. Sergeev (2002) A novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J. Comput. Chem. 23: 600-609 https://doi.org/10.1002/jcc.10061
  12. Richards, F. M. (1977) Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 6: 151-176 https://doi.org/10.1146/annurev.bb.06.060177.001055
  13. Murzin, A. G., S. E. Brenner, T. Hubbard, and C. Chothia (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247: 536-540
  14. Pearson, W. R. and D. J Lipman. (1988) Improved tools for biological sequence comparison. Proc. Nat! Acad. Sci. USA 85: 2444-2448 https://doi.org/10.1073/pnas.85.8.2444
  15. Schubert, W. D., G. Gobel, M. Diepholz, A. Darji, D. Kloer, T. Hain, T. Chakraborty, J. Wehland, E. Domann, and D. W. Heinz (2001) Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain. J. Mol. BioI. 312: 783-794 https://doi.org/10.1006/jmbi.2001.4989
  16. Yu, E. W. and D. E. Koshland Jr. (2001) Propagating conformational changes over long (and short) distances in proteins. Proc. Natl. Acad. Sci. USA 98: 9517 -9520 https://doi.org/10.1073/pnas.161239298
  17. Ghetu, A. E, M. J. Gubbins, L. S. Frost, and J. N. Glover (2000) Crystal structure of the bacterial conjugation represso finO. Nat. Struct. BioI. 7: 565-569 https://doi.org/10.1038/76790
  18. Deuerling, E., H. Patzelt, S. Vorderwulbecke, T. Rauch, G. Kramer, E. Schaffitzel, A. Mogk, A. Schulze-Specking, H. Langen, and B. Bukau (2003) Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol. Microbial. 47: 1317-1328 https://doi.org/10.1046/j.1365-2958.2003.03370.x