Conversion of G. hansenii PJK into Non-cellulose-producing Mutants According to the Culture Condition

  • Park, Joong-Kon (Department of Chemical Engineering, Kyungpook National University) ;
  • Hyun, Seung-Hun (Department of Chemical Engineering, Kyungpook National University) ;
  • Jung, Jae-Yong (Department of Chemical Engineering, Kyungpook National University)
  • Published : 2004.10.01

Abstract

The conversion of a cellulose-producing cell ($Cel^+$) from Gluconacetobacter hansenii PJK (KCTC 10505 BP) to a non-cellulose-producing cell ($Cel^-$) was investigated by measuring the colony forming unit (CFU). This was achieved in a shaking flask with three slanted baffles, which exerted a strong shear stress. The addition of organic acid, such as glutamic acid and acetic acid, induced the conversion of microbial cells from a wild type to $Cel^-$ mutants in a flask culture. The supplementation of $1\%$ ethanol to the medium containing an organic acid depressed the con-version of the microbial cells to $Cel^-$ mutants in a conventional flask without slanted baffles. The addition of ethanol to the medium containing an organic acid; however, accelerated the conversion of microbial cells in the flask with slanted baffles. The $Cel^+$ cells from the agitated culture were not easily converted into $Cel^-$ mutants on the additions of organic acid and ethanol to a flask without Slanted baffles, but some portion of the $Cel^+$ cells were converted to $Cel^-$ mutants in a flask with slanted baffles. The conversion ratio of $Cel^+$ cells to $Cel^-$ mutants was strongly re-lated to the production of bacterial cellulose independently from the cell growth.

Keywords

References

  1. Park, J. K., Y. H. Park, and J. Y. Jung (2003) Production of bacterial cellulose by Gluconacetobacter hansenii isolated from rotten apple. Biotechnol. Bioprocess Eng. 8: 83-88 https://doi.org/10.1007/BF02940261
  2. Matthysse, A. G., D. L. Thomas, and A. R. White (1995) Mechanism of cellulose synthesis in Agrobacterium tume· faciens. J. Bacterial. 177: 1076- 1081 https://doi.org/10.1128/jb.177.4.1076-1081.1995
  3. Brown, A. J. (1886) An acetic acid ferment which forms cellulose. J. Chem. Soc. 49: 432-439 https://doi.org/10.1039/ct8864900432
  4. Delmer, D. P. and Y. Arnor (1995) Cellulose biosynthesis. Plant Cell 7: 987-1000 https://doi.org/10.1105/tpc.7.7.987
  5. Yamanaka, S., K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi, and M. Uryu (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mat. Sci. 24: 3141-3145 https://doi.org/10.1007/BF01139032
  6. Cannon, R. E. and S. M. Anderson (1991) Biogenesis of bacterial cellulose. Crit. Rev. Microbial. 17: 435-447 https://doi.org/10.3109/10408419109115207
  7. Yoshino, T., T. Asakura, and K. Toda (1996) Cellulose production by Acetobacter pasteurianus on silicone membrane. J. Ferment. Bioeng. 81: 32-36 https://doi.org/10.1016/0922-338X(96)83116-3
  8. Klemm D., D. Schumann, U. Udhard, and S. Marsch (2001) Bacterial synthesized cellulose: Artificial blood vessels for microsurgery. Prog. Polym. Sci. 26: 1561-1603 https://doi.org/10.1016/S0079-6700(01)00021-1
  9. Vandamme, E. J., S. De Baets, A. Vanbaelen, K. Joris, and P. De Wulf (1998) Improved production of bacterial cellulose and its application potential. Polym. Degrad. Stabil. 59: 93-99 https://doi.org/10.1016/S0141-3910(97)00185-7
  10. Jeong, Y. J. and I. S. Lee (2000) A view of utilizing cellulose produced by Acetobacter bacteria. Food Ind. Nutr. 5: 25-29
  11. Orodera, M., I. Harashima, K. Toda, and T. Asakura (2002) Silicone rubber membrane bioreactors for bacterial cellulose production. Biotechnol. Bioprocess Eng. 7: 289-294 https://doi.org/10.1007/BF02932838
  12. Valla, S. and J. Kjosbakken (1981) Cellulose-negative mutants of Acetobacter xylinum. J. General Microb. 128: 1401-1408
  13. Park, J. K., J. Y. Jung, and Y. H. Park (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Lett. 25: 2055-2059 https://doi.org/10.1023/B:BILE.0000007065.63682.18
  14. Schramm, M. and S. Hestrin (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. General Microb. 11: 123-129 https://doi.org/10.1099/00221287-11-1-123
  15. Coucheron, D. H. (1991) An Acetobacter xylinum inser· tion sequence element associated with inactivation of cellulose production. J. Bacterial. 173: 5723-5731 https://doi.org/10.1128/jb.173.18.5723-5731.1991
  16. Son, H. J., O. M. Lee, Y. G. Kim, Y. K. Park, and S. J. Lee (2000) Characteristics of cellulose production by Acetobacter sp. A9 in static culture. Kor. J. Biotechnol. Bioeng. 15: 573-577
  17. Toyosaki, H., T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, and F. Yoshinaga (1995) Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Biosci. Biotechnol. Biochem. 59: 1498-1502 https://doi.org/10.1271/bbb.59.1498
  18. Pyun, Y. R. (2002) Method of manufacturing microbial cellulose employing soybean processed product. Korea Patent KP2002-0080802
  19. Lee, H. C. (1999) Medium for producing microbial cellulose and preparation method of microbial cellulose using the same. Korea Patent KB10-0197357