저온환경에서 NR/BR 블렌드 조성비 및 오일함량이 방진고무재료의 기계적 특성에 미치는 영향

Effect of NR/BR Blends ratio and Oil Content on the Mechanical Properties of Rubber Isolator at Low Temperature

  • 김완두 (한국기계연구원 마이크로응용역학그룹) ;
  • 김완수 (한국기계연구원 마이크로응용역학그룹) ;
  • 우창수 (한국기계연구원 마이크로응용역학그룹) ;
  • 최성신 (세종대학교 응용화학과)
  • Kim, Wan-Doo (Micro System & Structural Mechanics Group, Korea Institute of Machinery and Materials) ;
  • Kim, Wan-Soo (Micro System & Structural Mechanics Group, Korea Institute of Machinery and Materials) ;
  • Woo, Chang-Soo (Micro System & Structural Mechanics Group, Korea Institute of Machinery and Materials) ;
  • Choi, Sung-Seen (Dept. of Applied Chemistry, Sejong University)
  • 발행 : 2004.06.30

초록

방진고무의 내한성을 향상시키기 위하여 NR 컴파운드에 유리전이온도가 상대적으로 낮은 BR을 섞거나 오일 함량을 늘리는 방법을 이용하여 새로운 컴파운드를 제작하였다. 저온환경에서 기계적물성 실험을 수행하여 NR/BR 조성비 및 오일 함량에 따른 영향을 조사하였다. BR 함량이 증가할수록 경도 및 모듈러스가 증가한 반면 인장강도 및 신율은 감소하였고, 오일 함량이 많을수록 경도, 모듈러스 및 인장강도는 감소하였으나 신율은 거의 변화가 없었다. NR/BR 블렌드 고무컴파운드는 NR과 BR의 유리 전이 온도인 $-50^{\circ}C$$-90^{\circ}C$에서 저장탄성계수의 급격한 전이와 손실계수인 tan ${\delta}$가 최대값을 보여 두 컴파운드간의 비상용성을 나타내었다.

New compounds were made using various NR/BR blend ratio and oil content to improve mechanical properties of rubber isolator at low temperature. Mechanical properties were investigated as a function of NR/BR blend ratio and oil content. Hardness and tensile modulus generally increased, but tensile strength and elongation at break decreased with increasing BR content. Hardness, tensile modulus and tensile strength decreased, but elongation at break were nearly the same with increasing oil content. The glass transition temperature of NR and BR were found to be $-50^{\circ}C$ and $-90^{\circ}C$ respectively based on the abrupt drops in storage elastic modulus and peak of loss factor. Two distinct transition temperature were observed in NR/BR blend compounds and each transition point was not affected by blend level indicating incompatible nature of NR/BR blend.

키워드

참고문헌

  1. A. N. Gent, 'Engineering with Rubber', Hanser Publishers Ltd., Chap. 4, 1998
  2. Goran Spetz, 'Review of Test Methods for Determination of Low-Temperature Properties of Elastomers', Polymer Testing, 9, 27 (1990) https://doi.org/10.1016/0142-9418(90)90046-G
  3. A. N. Gent and L.-Q. Zhang, 'Strain-induced crystallization and strength of rubber', Rubber Chem. Technol., 75, 923 (2002) https://doi.org/10.5254/1.3547692
  4. A N. Gent and L.-Q. Zhang, 'Strain-induced crystallization and strength of elastomers. I. cis-1,4-Polybu tadiene', J. Polym. Sci. Part B: Polym. Phys., 39, 811 (2001) https://doi.org/10.1002/1099-0488(20010401)39:7<811::AID-POLB1055>3.0.CO;2-C
  5. M. Baba, S. George, J. L. Gardette, and J. Lacoste, 'Crosslinking pf elastomers upon ageing: a kinetic approach based on crystallinity chages followed by DSC', Polym. Int., 52, 863 (2003) https://doi.org/10.1002/pi.976
  6. M. J. van der Merwe, M. H. S. Gradwell, and W. J. McGill, 'Crystallization of vulcanizates. II. Low-temperature crystallization as a function of extent of cure for polybutadiene vulcanized with dicumyl peroxide, tetramethylthiuram disulfide, 2-bisbenzotha zole-2,2'-disulfide, and zinc-accelerator complexes', J. Appl. Polym. Sci., 81, 2573 (2001)
  7. B. Jurkowska, Y. A. Olkhov, B. Jurkowski, and O. M. Olkhova, 'Study of butadiene rubber mastication and mixing with carbon black', J. Appl. Polym. Sci., 71, 729 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990131)71:5<729::AID-APP7>3.0.CO;2-8
  8. ASTM D412, Rubber Properties in Tension
  9. ASTM D2231, Rubber Properties in Forced Vibration