Journal of the Korean Association for Shell and Spatial Structures
Vol. 4, No. 4 (§¥ 14%), pp. 113~128, December, 2004

Vibrations of Complete Paraboloidal
Shells with Variable Thickness from a
Three-Dimensional Theory
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Abstract

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode
shapes of solid paraboloids and complete (that is, without a top opening) paraboloidal shells of revolution with variable
wall thickness. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is
based upon the 3D dynamic equations of elasticity. The ends of the shell may be free or may be subjected to any degree

of constraint. Displacement components U, ug, and U, in the radial, circumferential, and axial directions, respectively,
are taken to be sinusoidal in time, periodic in @, and algebraic polynomials in the r and z directions. Potential (strain)

and kinetic energies of the paraboloidal shells of revolution are formulated, and the Ritz method is used to solve the
eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of
the polynomials is increased, frequencies converge to the exact values. Convergence to fourdigit exactitude is demonstrated
for the first five frequencies of the complete, shallow and deep paraboloidal shells of revolution with variable thickness.
Numerical results are presented for a variety of paraboloidal shells having uniform or variable thickness, and being either
shallow or deep. Frequencies for five solid paraboloids of different depth are also given. Compatisons are made between
the frequencies from the present 3-D Ritz method and a 2D thin shell theory.

Keywords : Three Dimensional  Analysis;  Vibration; Complete Paraboloidal  Shells;  Solid  Paraboloids;  Shells  of
Revolutior; Thick Shell; Variable Thickness; Ritz method

1. INTRODUCTION cight references”™  considering paraboloidal

shells. Some additional investigations of the

Paraboloidal shell structures and components static and dynamic characteristics of paraboloidal

have been widely used in civil, mechanical, and shells have also been uncovered.'”” However,

aerospace structures and systems, e.g., homs, these studies were either experimental, or were

nozzles, rocket fairings, solar collectors, co- based upon thin shell theory, which is math-
ematically two-dimensional (2-D). That is, for

thin shells one assumes the Kirchhoff hypothesis

mmunication antennas, optical mirrors, etc. A

vast published literature exists for free vibrations

of shells. The monograph of Leissa’ summarized
approximately 1000 relevant publications world-
wide through the 1960's. Almost all of these
dealt with shells of revolution (e.g, circular

cylindrical, conical, spherical). Among them were
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that normals to the shell middle surface remain
normal to it during deformations (vibratory, in
this case), and unstretched in length. This yields
an eighth order set of partial differential equa-
tions of motion to be solved. For para- boloidal
shells they involve variable coefficients, making
them quite difficult to solve.

Even so, conventional shell theory is only
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applicable to thin shells. A higher order shell
theory could be used which considers the effects
of shear deformation and rotary inertia, and
would be useful for the low frequency modes of
moderately thick shells. Such a theory would
also be 2D. But for paraboloidal shells the
resﬁlting equations would be very complicated.
For such moderately thick shells, approximate
results can be obtained by the finite element
method.

Recently, from a 3-D theory in terms of three
displacement components which are tangent or
normal to the shell middle surface, Leissa and
Kang™ analyzed the free vibrations of open
(with a top opening) paraboloidal shells of revo-
lution with linear thickness variation along the
meridional direction using the Ritz method, but
they did not give results for complete (without a
top opening) paraboloidal shells due to the sing-
ularities arising at the peaks of the shells.

In the present work complete paraboloidal
shells of revolution with variable thickness and
solid paraboloids are analyzed by a 3D
approach. Instead of attempting to solve equa-
tions of motion, an energy approach is followed
which, as sufficient freedom is given to the three
displacement components, yields frequency val-
ues as close to the exact ones as desired. To
evaluate the energy integrations over the shell
volume exactly (not numerically), displacements
and strains are expressed in terms of the circular
cylindrical coordinates, instead of related 3-D
shell coordinates which are normal and tangent

to the shell midsurface, which were employed
by Leissa and Kang™. Results are obtained for
five solid paraboloids and fifteen complete,
shallow and deep paraboloidal shells of re-
volution with both uniform and variable thick-
ness, which are completely free. Comparisons

are also made between the frequencies from the

present 3D Ritz method and a 2D thin shell
theory.

2. METHOD OF ANALYSIS

A representative crosssection of a complete
paraboloidal shell of revolution having variable
thickness is shown in Fig. 1. The shell thick-

nesses (f) at the top and bottom are % (AB) and
hy(CD), respectively. The curve Zm passing
through the origin of the circular cylindrical
coordinate system and a point (v, z) =(R, H) in
Fig. 1 is the midsurface of the shell and its

equation is expressed as
_.2
Za=r"14a, D)

where a=R*/4H is the focal distance of Zm.
The straight line at the boundary of the shell
passes through the point (r, z) =(R, H) is normal

to the curve Zm and its equation is expressed as
R 2H?

R, ©

»= o0 R

Each of the two points C (R, H,) and D (R;,
H;) on the line % are at a distance of /2
from the mid surface point (r, z) =(R, H), and

thus Hio and Rio are located at

= doxis of roveluion)

Fig. 1. A cross section of a complete
paraboloidal shell of revolution
and the circular cylindrical coo-

rdinate system (r, z,9).
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Vibrations of Complete Paraboloidal Shells with Variable Thickness from a Three-Dimensional Theory

R.
H,-0=£ 2k% +1-—22
0 2k R |, 3)
R,0=R[1$ ko
V1+4k2 7 (4)
where
H h
k=— oa=-—>*
R, R - ©)

Also, the curves %.o, which generate inner

and outer surfaces of the shell, respectively, pass
through the points B (0, %4/2) and D (R;, H),
and A (0,~%/2) and C (R,,H,), respectively,

and thus their equations are

, (6)

where %.o are the focal distances of the

curves %o, respectively,

kR. 2

i,0

T K T oapk+DR—R,, ] )

ai,o

with B is thickness ratio, defined by
B=h/hy. ®)

Thus the domain (A ) of the shell is described
by

0<r<R;, z,(Nsz<z(r), 0<0<2m, (9a)
and
R Sr<R, z,(nN<z<z(r), 0<0<2n,

(9b)

where 9 is the circumferential angle. For a

solid paraboloid with Z» as an outer surface
and R as a radius of circular bottom, the domain

(A) is given by
0<r<R, z,(r)Sz<H 0<6<2m. (10)

For mathematical convenience, the radial (r)
and axial (z) coordinates are made dimensionless
as

y=r/R, {=z/H (11)

Thus the domain of the shell in terms of the

nondimensional coordinates (¥-.9) is given by

O<y<y;, L,(w)<C<C(w), 0<6<2m, (12a)
and

viswsy,, L,y <sC<(y),0<0<2r,(12b)
where

Ri,a ko

R V1+4k? (13)

1
§b=1—y(\lf—1)

(14)
2k2$(x[3k+l—yi o
Ci o= 2 2 2 Wz i_B
2k ,Yi,o 2k ’ (15)
with
Ri o —_ ok
Yi,o =—=1%

R V1+4k2 . (16)
In the case of solid paraboloids, it is given by
0sys<1l, y'<{<l, 0<0<2nm. 17)

Utilizing tensor analysis, the three equations

of motion in the circular cylindrical coordinate
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system (r, z,0) were found to be*

1 ..
Opr TOp + ;(Grr —Ogp t+ GrO,G) = pur, (]_83)
Sz + Ozz,z + l((Srz + 626,9) = piiz (18b)
. v 7
Cro,r + Oz, +l(20r9 +Ggg,p) = Piig (18
) 2z , , C)

where the % are the normal (! =J) and shear
(#7) stress components; ¥, ¥;, and Yo are
the displacement components in the 7, z, and ©
directions, respectively; P is mass density per
unit volume; the commas indicated spatial
derivatives; and the dots denote time derivatives.

The well'’known relationships between the

O

tensorial stresses (%) and strains (%7) of

isotropic, linear elasticity are

where A and G are the Lamé parameters,
expressed in terms of Young’s modulus (E) and

Poisson’s ratio (V) for an isotropic solid as:

_ Ev _E
A+v)Y1=2v),  2(1+v), (20)

£€=¢€,1TE€,+E€y is the trace of the strain
tensor, and 5!’1’ is Kronecker’s delta.

The three-dimensional tensorial strains (&)

are found to be related to the three dis-

placements #, ¥;, and s, by Sokolnikoff *

2e,0=1u +uz_,6
0 T %6,z o (21b)

Substituting Eqs. (19) and (21) into Egs. (18),
one obtains a set of three second-order partial
differential equations in u,, wu,, and ug
governing free vibrations. | However, in the case
of paraboloidal shells, exact solutions are in-
tractable because of the variable coefficients that
appear in many terms. Alternatively, one may
approach the problem from an energy per-
spective.

Because the strains are related to the
displacement components by Egs. (21), un-
acceptable strain singularities may be encount-
ered exactly at =0 due to the term 1/r. Since a
very small hole does not affect the frequencies,”
such singularities may be avoided by replacing

the range for ¥ (=r/R), 0S¥ <V; in Eq. (12a)
and 0S¥<1 in Eq. (17), with 10° S¥<Vy; and

10° <y<1, respectively.

During vibratory deformation of the body, its
strain (potential) energy (V) is the integral over
the domain (A ):

1
V= —2- J'A (0,8, +0,8,, + Opoa + 20,2€,,

+ 26,08, + 26,080 7 dr dz dO 22

Substituting Eqs. (19) and (21) into Eq. (22)
results in the strain energy in terms of the three

displacements:

4 =—;— J‘A[;\'(er" +azz +See)2 + 2G{8rr2 +8222 +8992

W +itg g +2(e,,% + 850" +E,0)}] 7 dr dz d® (23)
&y = Uy, &z =Uz, Eop = r (21a)
-0 —Ug where the tensorial strains & are expressed in
28, =u,, +u,, 2€0=Ug,+ .
’ T roo terms of the three displacements by Eqgs. (21).
116 HAA M4z EH 142, 2004. 12



Vibrations of Complete Paraboloidal Shells with Variable Thickness from a Three-Dimensional Theory

The kinetic energy (T) is simply

1 .2 .2 .2
T—EIAp(ur +11, +it”) rdrdzdd (24)

For the free, undamped vibration, the time ()
response of the three displacements is sinusoidal
and, moreover, the circular symmetry of the
body of revolution allows the displacements to

be expressed by

i, (9,5,6,0) =U,.(y,{)cosnB sin(wr +ar) | (25a)
u, (y,5,6,1)=U,(y,{)cosnd sin(or + or) , (25b)
ug (¥, C,0,1) =Ug(y,{)sinnb sin(wr +01) (25¢)

where U,, U,, and U, are displacement

functions of ¥ and &, ® is a natural frequency,
and @ is an arbitrary phase angle determined
by the initial conditions. The circumferential
wave number is taken to be an integer (n=0, 1,
2,3, =+, =), to ensure periodicity in 0. That the
variables separable form of Egs. (25) does apply
may be verified by substituting the dis-
placements into the 3D equations of motion.”®
Then Egs. (25) account for all free vibration
modes except for the torsional ones. These
modes arise from an alternative set of solutions
which are the same as Egs. (25), except that
cosnb and sinn® are interchanged. For n21,
this set duplicates the solutions of Egs. (25), with
the symmetry axes of the mode shapes being

rotated. But for n=0 the alternative set reduces
to u,=u,=0, uy=Ug(y,{)sin(owr+0)), which co
rresponds to the torsional modes. The dis-
placements uncouple by circumferential wave
number (n), leaving only coupling in r (or V)
and z (or §).

The Ritz method uses the maximum potential

(strain) energy (Ymax) and the maximum kinetic
energy (Imax) functionals in a cycle of vibratory
motion. The functionals for the shells are obtained
by setting $in’(@f+0) and cos” (0 +0) equal to
unity in Eqgs. (23) and (24) after the displacements
(25) are substituted, and by using the non-
dimensional coordinates ¥ and & as follows:
HG| ¢v; & ,
Vmax=7|;[ J Iy \Ided\If"‘_[

v,
0 Jg, Vi

cC: Iy wdcdw]l
(26)
Tmax=3¢m If Ir wd?;dwj:sz’ Iy wdf;dw]l
(27)

where

Iy = [%(Kl +Kg + s F + 2057+ +Kk7) + K42:|

T+ (k5" + k6T a
(28)
g2 2 2
I =U,"+U 1 +Ug" T, (29)
and
_U,+nUy _Uz,C
K = v, K =U,, K3 = P (30a)
Ur,C nUz_Ue»C
K=U, \+ ., Ks = v k.
nU +Ue
="Mr7Ve gy
STy ey, (300)

and I and I are constants, defined by

2n if n=0

n
I = *n0do =
=, cos’n {n itn>1

0 ifn=0

_ n 5 _
rz_jo s nede—{n ifn21 . (31

rok

=Y -

OH

xS =2
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From Egs. (20) it is seen that the non-
dimensional constant A/G in Eq. (28) involves

only Vas follows

A
G 1-2v. (32)

For solid paraboloids, the maximum energy
functionals are given simply by
HG il
Vmax —T J‘OJ‘\;IZ IV \ldedW’ (33)

2 2
_ PpO“HR” ¢1r1
Towe == [ ], Ir welCay o)

The displacement functions Ur, U, and Us
in Egs. (25) are further assumed as algebraic

polynomials,
I J .
U,p.0)=n, go. g.) AW (350)
K L kol
U,(¢.0)=n, I;) ; Buw'¢ (35b)
M N men
Us(.L)=o mZO go Com V"8 (350)

and similarly for Us, where i, j, k, I, m, and n
are integers; I, ], K, L, M, and N are the highest
degrees taken in the polynomial terms; 4i, By
and Cmn are arbitrary coefficients to be deter-
mined, and the M are functions depending upon
the geometric boundary conditions to be en-
forced. For example:

1. completely free: M, =M, =Mp =1,

2. the bottom edge fixed: M, =N, =M =G,,

The functions of M shown above, impose only

the necessary geometric constraints related to

displacement boundary conditions. Together
with the algebraic polynomials in Eqs. (35), they
form function sets which are mathematically
complete (Kantorovich and Krylov™, pp. 266-
268). Thus, the function sets are capable of
representing any 3-D motion of the shell with
increasing accuracy as the indices I, ], -+, N are
increased. In the limit, as sufficient terms are
taken, all internal kinematic constraints vanish,
and the functions (35) will approach the exact
solution as closely as desired.

The eigenvalue problem is formulated by

minimizing the free vibration frequencies with

respect to the arbitrary coefficients 47, Bu and

Cun, thereby minimizing the effects of the

internal constraints present, when the function
sets are finite. This corresponds to the equations
(Ritz™):

8
2 o —T..)=0,
o, P max — Tmax)
G=012,.,1; j=01,2,..,7) (36a)
8
V.o o —T. )=0,
(k=0,1,2,...,K;1=0,12,..,L) (36b)
P
aC (Vmax_Tmax)zo’
mn
(m=012,..,M;n=012,.,N) (36¢)

Equations (36) yield a set of (I+1)(J+1)
+(K+1)(L+1)+(M+1)(N+1) linear, homogeneous,

algebraic equations in the unknowns 4, By,

and Cm. The equations can be written in the
form
K-QM)x=0, 37)

where K and M are stiffness and mass

matrices resulting from the maximum strain

energy (Ymax) and the maximum kinetic energy
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Vibrations of Complete Paraboloidal Shells with Variable Thickness from a Three-Dimensional Theory

(Tmax ), respectively, and Q is an eigenvalue of

the vibrating system, expressed as the square of

nonrdimensional frequency, @=pw’R’/G and

the vector x takes the form

X = (Ago» Aot > 4175 Bog» Boys -+ Bk s
Coo> Cots -+ Camy)" . (38)

For a nontrivial solution, the determinant of
the coefficient matrix is set equal to zero, which
yields the frequencies (eigenvalues); that is to

say [K-QM|=0_ These frequencies are upper

bounds on the exact values. The mode shape
(eigenfunction) corresponding to each frequency
is obtained, in the usual manner, by substituting
each ® back into the set of algebraic equations,

and solving for the ratios of coefficients.

3. CONVERGENCE STUDIES

To guarantee the accuracy of frequencies
obtained by the procedure described above, it is
necessary to conduct some convergence studies
to determine the number of terms required in
the power series of Egs. (35). A convergence
study is based upon the fact that, if the
displacements are expressed as power series, all
the frequencies obtained by the Ritz method
should converge to their exact values in an
upper bound manner. If the results do not
converge properly, or converge too slowly, it
would be likely that the assumed displacement
functions chosen are poor ones, or be missing
some functions from a minimal complete set of
polynomials.

Table 1 is such a study for a completely free,
shallow (H/R=1/3), complete paraboloidal shell

of revolution having variable thickness (/h
=1/3) with #/R=1/10. The table lists the first

Table 1. Convergence of frequencies in ORP/G
of a free, complete paraboloidal shell
of revolution having variable thick-
ness (m/h%=1/3) for the five lowest
bending modes (n=2) with H/R=1/3
and "/R=1/10 for v =0.3.

DET| 1 2 3 4 5

18 01828 | 1.881 | 2.285 | 4142 | 7945
24 101746 | 1.701 | 1.929 | 4087 | 5117
01718 | 1439 | 1901 | 4.048 | 4.0%
36 |01711 1.379 + 1.899 | 2936 | 4084
42 101706 | 1.375 | 1.899 | 2593 | 4.083
48 01704 | 1.372 | 1.898 | 2.560 | 4.083
01703 | 1.371 | 1.898 | 2530 | 4.083

27 101693 | 1.732 | 1.938 | 4.098 | 7.232
36 | 01613 | 1432 | 1901 | 3731 | 409
01608 | 1.295 | 1.897 | 2874 | 4.083
01603 | 1.279 | 1.8% | 2.305 | 4.083
01600 | 1.274 | 1.8% | 2210 | 3.861
01598 | 1.273 | 1.8% | 2183 | 3.642
01597 | 1.272 | 1.89% | 2171 | 3549

01636 | 1.588 | 1912 | 4086 | 4774

01600 | 1.280 | 1.897 | 2521 | 4.083
01598 | 1.274 | 1.89% | 2217 | 4.082
0159% | 1.272 | 1.8% | 2186 | 3.643
0.15% | 1.271 | 1.89 | 2170 | 3.563
015% | 1.271 | 1.89% | 2166 | 3.502

45
54
63
72
81
36
48 101604 | 1.346 | 1.898 | 3.248 | 4.08
60
72
84
9
108
45

01612 | 1466 | 1903 | 3.6% | 4.087
01601 | 1.307 | 1.897 | 2904 | 4.083
75 101597 | 1.276 | 1.89% | 2.328 | 4.083
90 |0159% | 1.272 | 1.89% | 2193 | 3.835
105 {0159 | 1271 | 1.8% | 2176 | 3581
120 {01595 | 1.271 | 1.8% | 2167 | 3.526
135 | 01595 1.271 | 1.8% | 2.164 | 3488

54 101610} 1413 | 1.901 | 3457 | 4.08
72 101597 | 1.290 | 1.897 | 2.636 | 4.083
90 |0159% | 1.273 | 1.89% | 2.242 | 4.082
108 [ 01596} 1272 | 1.8% | 2183 | 3.664
126 {01595 | 1271 | 1.8% | 2171 | 3.551
144 {01595 | 1.271 | 1.8% | 2.165 | 3.503
162 101595 | 1.271 | 1.8% | 2164 | 3481
180 | 01595 | 1.271 | 1.8% | 2164 | 3478

63 01608 | 1401 | 1901 | 3140 | 4.084
84 10159 | 1281 | 1.897 | 2468 | 4.083
105 {01595 | 1.272 | 1.8% | 2203 | 3.99
126 (01595 1.271 | 1.8% | 2178 | 3.580
147 101595 | 1.271 | 1.8% | 2167 | 3529
168 {01595 | 1.271 | 1.8% | 2164 | 3.489
189 [ 015951 1271 | 1.8% | 2164 | 3479
210 | 0.159% | 1.271 | 1.8% | 2164 | 3478

NN NN NN NN @O\O\O\G\O\O\O\(ﬂmmmmo‘lmﬂk%%%%%ﬂkWDJQJQJLDUJUJNNNNNNNEQ]

—
o

8134l - ZTxss

E
Ho
A

119



five nondimensional frequencies in “’R\/P/*G for
v=03, for modes having two circumferential
waves (n=2) in their mode shapes.

To make the study of convergence less
complicated, equal numbers of polynomial terms
were taken in both the r (or V) coordinate (i.e.,
[=K=M) and z (or &) coordinate (ie, J=L=N),
although some computational optimization could
be obtained for some configurations and some
mode shapes by using unequal numbers of
polynomial terms.

The symbols TZ and TR in the table indicate
the total numbers of polynomial terms used in
the z (or &) and r (or V) directions, res-
pectively. Note that the frequency determinant
order DET is related to TZ and TR as follows:

DET=

TZ xTR for torsional modes (n = 0)
2XTZ xTR for axisymmetric modes (n = 0)
3XTZ xTR for general modes (n >1) (39)

Table 1 shows the monotonic convergence of
all five frequencies as TZ (= J+1, L+1, and N+1
in Eqgs. (35)) are increased, as well as TR (= [+1,
K+1, and M+l in Egs. (35)). One sees, for
example, that the fundamental (i.e., lowest) non-
dimensional frequency in ®@R,/p/G converges to

four digits (0.1595) when 3x(7x5)=105 terms are
used, which results in DET=105. Moreover, this
accuracy requires using at least seven terms
through the axial direction (TZ=7) and five ones
through the radial direction (TR=5).

Table 2 is a similar convergence study for a
completely free, deep (H/R=3), complete
paraboloidal shell of revolution having variable
thickness (/M =1/3) with %/R=1/10. The
table lists the first five nondimensional fre-

Table 2. Convergence of frequencies in

@R{p/G of a free, complete pa-
raboloidal shell of revolution
having variable thickness (%/%
=1/3) for the five lowest torsional
modes (n=0T) with H/R=3 and
hy/R =1/10 for v =0.3.

DET| 1 2 3 4 5

6 | 1449 | 3178 | 1639 | 37.29 | 5092
8 | 1425 | 2516 | 5064 | 19.08 | 3625
10 | 1423 | 2455 | 3597 | 7.346 | 21.50
12 | 1423 | 2435 | 3504 | 4728 | 1003
14 | 1423 | 2434 | 3430 | 4612 | 5944
16 | 1423 | 2434 | 3427 | 4423 | 5808
18 | 1423 | 2434 | 3425 | 4416 | 542

9 | 1432|2832 | 4862 | 2230 | 3682
12 | 1424 | 2467 | 4126 | 6851 | 21.94
15 | 1423 | 2442 | 3511 | 5366 | 9260
18 | 1423 | 2434 | 3453 | 459 | 6.630
21 | 1423 | 2434 | 3426 | 4476 | 5741
24 | 1423 | 2434 | 3425 | 4416 | 5520
27 | 1423 | 2434 | 3424 | 4409 | 5412

12 | 1425 | 2601 | 4357 | 7.600 | 2398
16 | 1424 | 2443 | 3714 | 5392 | 9419
20 | 1423 | 2437 | 3462 | 4764 | 7424
1423 | 2434 | 3433 | 4509 | 5865
1423 | 2434 | 3425 | 4430 | 5597
1423 | 2434 | 3424 | 4410 | 5435
1423 | 2434 | 3424 | 4408 | 5398

R

1424 | 2497 | 4082 | 615 | 11.02
1423 | 2439 | 3517 | 5177 | 7.8%
1423 | 2434 | 3445 | 4542 | 6.264
1423 | 2434 | 3426 | 4463 | 5.604
1423 | 2434 | 3424 | 4412 | 5497
1423 | 2434 | 3424 | 4409 | 5401
1423 | 2434 | 3424 | 4407 | 5391

| 1424 | 2491 | 3.736 | 5.933 | 8.669
1423 | 2437 | 3455 | 4783 | 6858
1423 | 2434 | 3433 | 4482 | 5751
1423 | 2434 | 3424 | 4428 | 5535
1423 | 2434 | 3424 | 4409 | 5426
1423 | 2434 | 3424 | 4408 | 5393
1423 | 2434 | 3424 | 4407 | 5388
1423 | 2434 | 3424 | 4407 | 5387

B oo s WE©OOENO U WO0NOU R WO XU W[OS Gk WO oo e W

1424 | 2471 | 3693 | 5217 | 8322
1423 | 2435 | 3449 | 4560 | 6341
1423 | 2434 | 3427 | 4451 | 5578
1423 | 2434 | 3424 | 4412 | 5472
1423 | 2434 | 3424 | 4408 | 5398
1423 | 2434 | 3424 | 4407 | 5390
1423 | 2434 | 3424 | 4407 | 5387
1423 | 2434 | 3424 | 4407 | 5387
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Vibrations of Completé Paraboloidal Shells with Variable Thickness from a Three-Dimensional Theory

quencies in ®R,p/G for the torsional modes

(n=0"). One sees that the first torsional frequency
(L423) requires using only (TR, TZ)=(2, 5),
which results in DET=10, for four significant
figure exactitude.

It is interesting to note in both Tables 1 and 2
that the modes for n=2 require much larger size
of DET compared with the torsional modes
(n=0"), at least for the first two frequencies. This
is primarily because only the circumferential
displacement components () are involved in
three
components enter into the modes having n21,
as seen in Egs. (39). ‘

Frequencies in underlined, bold-faced type in
Tables 1 and 2 are the exact values (to four
significant figures) achieved with the smallest
determinant sizes. Comparing the numbers of
teems (TZ, TR) yielding the underlined 10

the torsional modes, whereas all

frequencies, one finds that, as the shell becomes
deeper, ie, as H/R becomes larger, more

polynomial terms in the axial direction (TZ) are
typically
converged to four significant figures with an

required for accurate frequencies

exception of the first frequency (0.1595) for n=2
in Table 1 for a shallow shell (H/R=1/3),
which resulted from (TZ, TR)=(7, 5).

4. NUMERICAL RESULTS AND
DISCUSSION

Tables 3~7 present the nondimensional

frequencies in ORY P/G  of free, complete

paraboloidal shells of revolution with H/R=1/3,
1/2, 1, 2, and 3, respectively. Each table is for
three shell configurations of (M%/R, i /hy)
=(1/30, 1), (1/10, 1/3), and (1/10, 1). That is, in

Table 3. Frequencies in ®RVP/G of free, complete paraboloidal shells of revolution with H/R

=1/3 for v=0.3.
ol s W/R=1/30 | m/R=1/10 | m/R=1/10 . TS miR=1/30 | mW/R=1/10 | ®/R=1/10
b/l =1 kb =1/3 he[hy =1 by [y =1 by =1/3 Iy [hy =]
1 4754 5.0% 4751 1 0.1967(2) 0.4255(2) 0.5634(2)
2 7.839 8.068 7.834 2 1176 1.653 2282
0" | 3] 108 11.01 1083 313 1.829 2.79 3519
4| 1381 13.94 1381 4 2798 3073 423
5| 1678 16.90 16.80 5 3519 4306 5.748
1 0.9423(6) 1.030(4) 0.9984(4) 1 0.3467(3) 0.7858(3) 0.9800(3)
2 1121 1352 1.793 2 1372 2179 2998
|3 1568 2150 3427 4 |3 2.200 3525 4577
4 2372 3125 3541 4 3316 4134 5204
5 3.490 3.466 5592 5 4578 5.208 7.320
1 0.9854 1.094(5) 1.243(5) 1 0.5305(4) 1.233 1481
2 1286 1672 2502 2 1.634 2816 3.797
1|3 1917 2656 2684 513 2623 4345 5576
4 2686 2759 4434 4 3.876 5.145 6217
5 2883 4288 5.649 5 5425 6.170 8.850
1 0.08287(1) 0.1595(1) 0.2417(1) 1 0.7474(5) 1.759 2.057
2 1.050 1271 1.681 2 19%4 3542 4658
2 |3 1521 1.89 2306 6 | 3 3.093 5233 6.547
4 2306 2164 3328 4 4475 6.128 7.262
5 2330 3478 4180 5 6.169 7.192 1007
=4l - F2HxEE| =2 121
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Table 4. Frequencies in ®RYP/G of free, complete paraboloidal shells of revolution with H/R
=1/2 for v =0.3.
n s /R =1/30 /R =1/10 /R =1/10 hy /R =1/30 hy/R =1/10 h/R=1/10
hofh, =1 Wb =1/3 o/, =1 s o/l =1 hlhy =1/3 o/ =1

1 4375 4698 4370 1 0.1864(2) 04287(2) 0.5375(2)
2 7.269 7502 7.261 2 1.303 1.702 2171

0| 3 1008 1025 1006 3 1.851 2.736 3451
4 12.85 1299 12.84 4 2.634 3.077 3.857
5 15.62 15.73 15.60 5 3450 4.070 5.669
1 1.204(6) 1.282(5) 1.250(4) 1 0.3325(3) 0.7920(3) 0.9443(3)
2 1422 1.664 1.844 2 1424 2161 2.795

| 3 1.739 2243 3.148 3 2129 3.395 4482
4 2318 3.278 3.614 4 3.058 4123 4734
5 3.205 3.325 5.009 5 4231 4897 6.976
1 1.248 1.356 1.411(5) 1 0.5127(4) 1.241(4) 1.436
2 1521 1.859 2383 2 1.620 2.751 3.525

1 3 1.972 2624 2.636 3 2474 4157 5461
4 2638 2723 4.005 4 3.536 5122 5.673
5 2715 4.024 5.298 5 4831 5.802 8.051
1 007685(1) |  01597(1) 0.2257(1) 1 0.7255(5) 1.769 2.002
2 1.253 1.39 1.692 2 1.885 3442 4331

2 3 1.648 1.932 2281 3 2.876 5.000 6418
4 2.268 2212 3.063 4 4.061 6.095 6.656
5 2279 3.337 4122 5 5473 6.769 9152

Table 5. Frequencies in ®RyP/G of free, complete paraboloidal shells of revolution with H/R

=1 for v=0.3.
w/R=1/30 | m/R=1/10 | m/R=1/10 m/R=1/30 | mW/R=1/10 | m/R=1/10
n | s hfhy =1 Wi =1/3 hfhy =] s hfhy =1 kit =1/3 hfhy =1
1| 32 3456 3228 1 0.1611(2) 0.4204(2) 04725(2)
2 | 5504 5.708 5493 2 1171 1435 1.662
o | 3| 77 7.880 7.691 3 1.686 2325 2788
4 | 9881 1003 9.860 4 2172 3117 3301
5 | 1204 12.16 1201 5 2.752 3.264 409
1| 1494 1540 1528 1 0.2953(3) 0.7819(3) 10.8542(3)
2 | 1731 1.946 1945 2 1168 1.790 2103
o | 3| 206 2510 2620 3 1.750 2768 3393
4 | 240 3.077 3565 4 2329 3.824 4263
5 | 279 3.630 3.626 5 3.009 4110 4854
1| 1514 1598 1590 1 0.4636(4) 1.229(4) 1.321(4)
2 | 177 2065 2120 2 1.269 2311 2697
1 | 3| 2116 251 2485 3 1910 3375 4119
4 | 2460 2674 2991 4 2577 4535 5203
5 | 2531 3.380 4031 5 3.349 5.062 5.699
1| 006285(1) 0.1542(1) 0.1864(1) 1 0.6647(5) 1.754 1.863
2 | 1265 1.249(5) 1.434(5) 2 1459 2948 339
2 | 31 173 2058 2268 3 2158 409 4931
4| 2106 2148 2368 4 2903 5347 6.134
5| 227m 2.85% 3467 5 3.757 6.004 6.612
122 AR M4z £A 14, 2004. 12
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Table 6. Frequencies in ®RYP/G of free, complete paraboloidal shells of revolution with H/R

=2 for v=0.3.
m/R=1/30 | m/R=1/10 | mW/R=1/10 W/R=1/30 | W/R=1/10 | m/R=1/10
) by [hy =1 by [y, =1/3 bl =1 S By [hy, =1 by =1/3 by [hy =1
1 1.948 2.048 1.945 1 0.1452(2) 0.4069(2) 0.4258(2)
2 | 3363 3478 3357 2 | 061355) 0.8765(5) 0.9728(5)
3 4757 4872 4.748 3 1115 1.465 1.627
4 6.142 6.253 6.130 4 1484 2.023 2.266
5 7522 7.626 7507 5 1.795 2.609 2970
1 | 158 1.603 1593 1| 027000) 0.7593(4) 0.7845(3)
2 1.721 1.833 1813 2 0.6438 1.253 1.374
3 1924 2194 2175 3 1.064 1.803 2.032
4 2140 2.581 2579 4 1.438 2387 2733
5 2.395 2.906 2.838 5 1.790 3.022 3.513
1 1486 1518 1499 1 0.4279(4) 1197 1.228
2 1.593 1.661 1.630 2 0.7758 1.767 1.909
3 1.761 1.987 1.948 3 1.155 2.340 2611
4 1.977 2335 2319 4 1528 2956 3.368
5 2.206 2.558 2579 5 1.908 3.634 4.209
1 | 0.05420(1) 0.1486(1) 0.1606(1) 1! 06184 1711 1.748
2 0.7165 0.7258(3) 0.8033(4) 2 09769 2375 2.536
3 1.336 1.445 1.516 3 1.347 2.99% 3.297
4 1.643 1.934 2.049 4 1.728 3.655 4111
5 1.908 2203 2.250 5 2136 4376 5.024

Table 7. Frequencies in ®RYP/G of free, complete

paraboloidal shells

of revolution with H/R

=3 for v=0.3.
h[R=1/30 hy/R=1/10 /R =1/10 By /R =1 /30) /R =1/10 hy /R =1/10

s | A/m=1 e/l =1/3 hefhy =1 s /by =1 e/l =1/3 h[hy =1
1 1.369 1423 1.368 1 0.1403(2) 04004(2) 040992
2 2364 2434 2362 2 0.3734(4) 0.6705(4) 0.7228(4)
3 3.349 3424 3.344 3 07171 1.034 1132

4 4.330 4407 4324 4 1.043 1416 1.551

5 5311 5387 5.305 5 1324 1.807 1985

1 1.533 1572 1.533 1 0.2616(3) 0.7468(5) 0.7595(5)
2 1.644 1.69 1.676 2 0.4595 1.065 1126

3 1.786 1931 1.905 3 0.7194 1405 1525

4 1.952 2.186 2168 4 0.9887 1.769 1.950

5 2131 2411 2414 5 1252 2165 2416

1 1111 1178 1113 1 0414 1178 1.194

2 1372 1.383 1.376 2 0.6166 1.567 1.637

3 1575 1.638 1.614 3 0.8453 1.932 2.068

4 1723 1.909 1.884 4 1.086 2318 2525

5 1.908 2205 2192 5 1.336 2737 3.055

1 0.05193(1) 0.1468(1) 0.1533(1) 1 0.6017 1.686 1.705

2 0.4066(5) 0.4538(3) 0.4958(3) 2 0.8225 2152 2232

3 09152 09770 1.028 3 1.047 2.560 2.709

4 129 1407 1465 4 1282 2980 3212

5 1.548 1779 1.855 5 1.546 3450 3.832
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each of the five tables, frequencies are given for
thin and thick shells of uniform thickness, and
also one having variable thickness. Poisson’s
ratio (V) was taken to be 0.3. Forty frequencies
are given for each configuration, which arise
from eight circumferential wave numbers (n=0",
0% 1, 2,3, 4, 5, 6) and the first five modes (s =1,
2, 3, 4 5) for each value of n, where the
superscripts T and A indicate torsional and
axisymmetric modes, respectively. The numbers
in parentheses identify the first five frequencies
for each configuration. The zero frequencies of
rigid body modes are omitted from the tables.

It is interesting to note in Tables 3~7 that,
irrespective of shell configurations, the fun-
damental (lowest) and the second frequencies
are for modes having two (n=2) and three (n=3)
circumferential half-waves, respectively, and the
torsional frequencies (n=0") are all for higher
modes. It is also seen that as the shells become
shallower (smaller H/R) the axisymmetric
modes (n=0") are more important. That is, they
are among the lowest frequencies of the body.

Table 8 gives the nondimensional frequencies
in OR{p/G  of completely free, solid
paraboloids with a radius of circular bottom R
and a height H for H/R=1/3,1/2, 1, 2, and 3.
Poisson’s ratio (V) was again taken to be 0.3. It
is interesting to note that H/R=1/3 (and
pethaps H/R=1/2) may be regarded as a
shallow shell, with thickness varying such that
the bottom surface is a plane.

One sees in Table 8 that for solid paraboloids
having small values (1/3, 1/2, 1) of H/R the
fundamental frequencies are for modes having
(n=2), while for large H/R=2, 3 they are for
n=1. The torsional modes (n=0") become more
important with increasing H/R. In general, one
notes in Table 8 that the paraboloids of larger

Table 8. Freguencies in oR,P/G  of free,
solid paraboloids for v =0.3.

H/R

13 | 12 1 2 3
5209 | 50 | 388 | 21630) | 1473()
8616 | 812 | 6000 | 36M™ | 250
1179 | 8987 | 6806 | 5137 | 3546
1203 | 1116 | 8517 | 5766 | 4563
1488 | 1219 | 9506 | 6628 | 55%
14650) | 1956(2) | 2639(2) | 2667(4) | 1.9530)
3719 | 438 | 403 | 3019 | 297
4462 | 450 | 5011 | 4006 | 3273
629 | 719 | 5974 | 4872 | 407
9027 | 887 | 74 | 55™ | 467
24300) | 30726) | 2975 | 2020(1) | 1.193(1)
3125 | 3109 | 3650 | 27526) | 2061(4)
496 | 5768 | 426 | 3170 | 2697
6662 | 630 | 5319 | 378 | 3017
729 | 6916 | 5919 | 4512 | 33%8
08717(1) | 1203(1) | 1.768(1) | 2083()) | 210765)
3163 | 3159 |31035) | 2002 | 2767
3351 | 4139 | 4667 | 4180 | 36
4814 | 4788 | 4801 | 4358 | 3957
6030 | 6978 | 591 | 4754 | 4460
14620) | 19650) | 2728¢) | 3091 | 3173
4200 | 4687 | 4538 | 4257 | 4100
4719 | 5164 | 596 | 552 | 5014
6517 | 6474 | 6300 | 568 | 5218
7116 | 8139 | 7370 | 6310 | 588
2023() | 26744) | 3607 | 404 | 4151
5115 | 5%6 | 5754 | 5433 | 5264
6014 | 6166 | 69983 | 6653 | 6206
8173 | 8148 | 7862 | 68%9 | 6400
8215 | 9260 | 8en | 778 | 7119
2570 | 3361 | 4453 | 496 | 5097
5975 | 7088 | 6883 | 65% | 6357
7208 | 7185 | 8066 | 7741 | 7313
9212 | 976 | 9299 | 8084 | 7557
9858 | 1038 | 985 | 8915 | 829

N
N WINPT WO R[0T RN O WM PR |UT e QRN Uk WU W !

mass (larger H for a fixed R) have higher
frequencies for the higher circumferential wave
numbers (1), but lower ones for n=1. Thus, the
stiffnesses of the larger paraboloids increase
more than their masses for most vibration
modes, but not for n=1. Compared with para-
boloidal shells in Tables 3~7, the -axisymmetric
modes (n=0") of solid paraboloids are more

significant.
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5. COMPARISON WITH 2-D SHELL
THEORY

Lin and Lee? analyzed free vibrations of
complete paraboloidal shells of revolution
applying a 2-D inextensional shell theory, which
depends on the assumption that the length of
line elements remain invariant under defor-
mation of the shell, based upon Love's®?
equation. They obtained the natural frequencies

(@) for free boundaries as follows:

2 nz(n2 -G N
96a*(1-v)p

_f: B tan®"=3 ¢ sec® ¢ (cos® ¢+ sec? o+ 2 — 4v) do

j: * htan?" g sec® §[2n+ (n? +Dsec? ] dp |

(40)

where h is the uniform shell thickness, a (=
R*/4H) is the focal distance of the midsurface

of a paraboloidal shell, ¢ is a meridian co-
ordinate, which is the angle between the normal
to the midsurface and the axis of revolution (z-
axis), and ¢, (tan"!(2H/R)) is ¢ at the bottom
face of the shell.

Comparisons of the present 3-D Ritz method
(3DR) with the 2-D shell theory (2DS) by Lin
and Lee” are made in Tables 9 and 10 for the
first (s=1) nondimensional frequencies in
OR\p/G for each n (=2, 3, 4, 5, 6) of com-
pletely free, complete paraboloidal shells of
revolution with uniform thickness (/% =1) for
H/R=1/2 (in Table 9) and 1 (in Table 10), and
v=03. The percent difference in frequencies

obtained by the two analyses is given by

2DS-3DR %100
Difference (%)= 3pR . (41)

Table 9. Comparisons of the first (s=1)
nondimensional  frequencies in

©RP/G for each n (=2, 3, 4, 5, 6)
from the 3 D Ritz (3DR) solutions
and 2 D shell (2DS) ones of free,
complete paraboloidal shells of
revolution with uniform thickness

(h/h =1) for H/R =1/2 and v =0.3.

h/R| Methods | n=2 | n=3 | n=4 | =5 | n=6
3DR 02583].06327| 0.1140 | 0.1774 | 0.2526
1/90 206 02623|.06462| 0.1173 | 0.1840 | 0.2648
(Difference %) | (1.6%}| (2.1%)| 29%) | (3.7%) | (4.8%)

3DR 0768501864 | 0.3325 | 05127 | 0.7255
1/30 2DS 0787110.1939| 0.3520 | 0.5521 | 0.7944
(Difference %) [(24%)|(4.0%) | 6.9%) | (7.7%) | (9.5%)

3DR 0.22570.5375 | 0.9443 | 1436 | 2.002
1/10 206 0.2361|0.5816| 1.055 | 1.656 | 2.383
(Difference %) |(4.6%) | (8.2%) |(11.7%})|(15.3%)|(19.0%)

Table 10. Comparisons of the first (s=1)
nondimensional freguencies in .
for each n (=2, 3, 4, 5, 6) from
the 3 D Ritz (3DR) solutions and
2 D shell (2DS) ones of free,
complete paraboloidal shells of
revolution with uniform thickness

(h/hy =1) for H/IR =1 and v =0.3.

m/R| Methods | n=2 | n=3 | n=4 | n=b | n=6
3DR 02163 (.05548| 0.1021 | 1.598 | 219
1/9%0 2D5 022101.056241 01027 | 1.611 | 2316
(Difference %) |(2.2%) |(1.4%)| (0.6%) | (0.8%) | (5.5%)

3DR 06285(0.1611 | 0.2953 | 0.4636 | 0.6647
1/30 205 06628 |0.1687 | 0.3080 | 0.4834 | 0.6946
(Difference %) |(5.5%) |(4.7%)| (4.3%) | (4.3%) | (4.5%)

3DR 0.186410.4725| 0.8542 | 1.321 | 1.863
1/10 206 0198905061 | 0.9240 | 1.450 | 2.084
(Difference %) |(6.7%) |(7.1%)| (8.2%) | (9.8%) |(11.9%)

It is observed that the 3-D Ritz method yields
lower frequencies than the 2-D thin shell results

in all the frequencies irrespective of thickness

parameter (/,/R), curvature (H/R), and
circumferential wave number (1), as expected.
An accurate 3-D analysis should typically yield
lower frequencies than those 2D thin shell

theory, mainly because shear deformation and
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rotary inertia effects are accounted for in a 3D
analysis, but not in 2-D, thin shell theory.
Particularly interesting is the fact that the
inextensional theory by Lin and Lee” includes
bending stiffness, but neglects membrane-type
stretching effects, and therefore the 2DS

frequencies in Table 9 and 10 are close to the

accurate 3DR results for the thin shell (hb/ R
=1/90). This confirms that the middle surface of
the shell can deform inextensionally for these
modes (n=2, 3, -**) when the shell boundary is
free. It is noticed in Tables 9 and 10 that the
frequency differences become larger as shell

thickness (/R) increases. It is interesting to
note that for the fundamental modes occurring
at n=2 the differences for H/R=1/2 (shallower
shell) are smaller than ones for H/R=1 (deeper

shell), and vice versa for the higher modes (n=2,
3, 4, 5) with two exceptions for (n, /R)=(6,
1/90) and (3, 1/30).

6. CONCLUDING REMARKS

Extensive and accurate frequency data
determined by the 3-D Ritz analysis have been
presented for complete (without a top opening)
paraboloidal shells of revolution with variable
thickness, and also solid paraboloids. The
analysis uses the 3-D equations of the theory of
elasticity in their general forms for isotropic
materials. They are only limited to small strains.
No other constraints are placed upon the dis-
placements. This is in stark contrast with the
classical 2-D thin shell theories, which make very
limiting assumptions about the displacement
variation through the shell thickness.

The method is straightforward, but it is
capable of determining frequencies and mode

shapes as close to the exact ones as desired.

Therefore, the data in Tables 3~8 may be
regarded as benchmark results against which 3
D results obtained by other methods, such as
finite elements and finite differences, and 2-D
shell theories may be compared to determine the
accuracy of the latter. Moreover, the frequency
determinants required by the present method are
at least an order of magnitude smaller than
those needed by 3D finite element analyses of
comparable accuracy. This was demonstrated
extensively in a paper by McGee and Leissa.”
The Ritz method guarantees upper bound
convergence of the frequencies in terms of
functions sets that are mathematically complete,
such as algebraic polynomials. Some finite
element methods can also accomplish this, but
others cannot.

The method presented could also be’ extended

to circumferentially open (0<0<6;) para-
boloidal shells, instead of circumferentially
closed (0<6<2m) paraboloidal shells of
revolution considered in the present work.
However, the periodicity in © would not be
present. It would be necessary then to replace
the double sums of algebraic polynomials in Egs.
(35) by triple sums, with polynomials in 6 being

included.
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