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Inelastic Buckling Behavior of Column and Beam-Column
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ABSTRACT : The inelastic lateral-torsional buckling behavior of the beam-columns and the columns was investigated in this

X

paper.The energy method was deployed to study the inelastic buckling behavior of the beam-columns and columns, which
requires the iterative solution of a fourth-order eigenproblem. Hitherto, the patterns of residual stress that satisfies the
[-section manufacturing in Korea is not available, therefore the pattern of residual stress used in this study is a
‘well-known simplified pattern. The simplified pattern of the residual stresses is incorporated with the flow theory of
plasticity to model the inelastic response.

Firstly, this study investigates the inelastic lateral-torsional buckling behavior of the I-section beam-columns under a
concentric axial compressive force and uniform bending. and the effect of residual stress on the inelastic buckling behavior
of beam-columns is studied. The study is then extended to the inelastic buckling of the columns by eliminating a bending
moment. These results are compared it with the design method in the Korean Steel Designers” Manual (KSDM 1995). This
study has found that design method in KSDM (1995) is excessively conservative.
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1. Introduction

The buckling mode of column subjected to an axial
compressive force has been classified into flexural,
torsional or combination of these two mode
(flexural-torsional). The lowest buckling mode of
column is usually flexural about minor axis without
twist. However, it is not the case for beam-column
subjected to a central axial compressive force and
uniform bending, the buckling mode of such I-sections
When the

beam-column is subjected to a concentric axial force

have been known as lateral-torsional.

and uniform bending, which produced the single
curvature nonlinearity
N -0 effects. Therefore, the inelastic

in-plane bending analysis of the beam—column is more

bending and geometric

produced the

complicated than those of the elastic analysis of
beam-column because the major axis flexure rigidity is
not constant due to the combination of yielding of the
stress and
applied load. Newmark (1943) presented integration
technique to determine the end moment, and this
study is adopted Newmark's this method to determine

cross—section caused by the residual

the end moment.
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Aim of this study is to investigate the inelastic
buckling behavior of the beam-columns and the
columns. The buckling behavior of the I-sections is
strongly influenced by the residual stress that is
produced during cooling process. Over the vyears,
number of researcher has been proposed the
theoretical model of residual stress based on the
experimental study. Ketter et al, (1955) presented
the simplified pattern of residual stress, the
distribution of residual stress in the flange is bilinear
and flange and constant tensile in the web, and this
pattern of residual stresses is suited the North
American [-sections. Number of researchers has been
used this pattern of residual stress to analyze the
inelastic  lateral-torsional ~ buckling hbehavior of
beam-columns. Miranda and Qjalvo (1965), Fukomoto
and Galambos (1966), and Abdel-Sayed and Agaln
(1973) investigated the inelastic buckling behavior of
the beam-columns with the simplified residual stress.

The tangent modulus £ that has been used in their
study is equal to the elastic modulus for elastic
regions and zero for yielded regions. Furthermore
Abdel-Sayed and Agaln (1973) assumed that the
yielded regions of the cross-section do not affect the
torsional rigidity, and therefore Saint Venant torsional
rigidity was used for the elastic and the yielded
regions. Trahair and Kitipornchai (1972) argued the
use of tangent modulus in the yielded regions of the
cross—section based on the slip theory, and Trahair
and Kitipornchai (1972) have used the strain
hardening modulus for yielded and strain hardened
regions of the cross—section. The tangent modulus
theory, as was done by Trahair and Kitipornchai
(1972), is adopted in this study. The analysis of
columns and beamrcolumns is tackled using an energy
method that requires the incremental and iterative
solution of a fourth-order eigenproblem. The
displacement and twist of flanges is represented as
half sine wave longitudinally with a number of
harmonics, while the cubic displacement is assumed
for the web. Adequate model of residual stress is not
available to suited the Korean [-section member and
this study is adopted the simplified residual stress as
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was done by Miranda and Ojalvo (1965), Fukomoto
and Galambos (1966), and Abdel-Sayed and Agaln
(1973). Firstly, this study considers the inelastic
lateral-torsional buckling of beam-columns subjected
to a concentric compressive axial force and uniform
bending, and then the reduction of elastic buckling
load due to the residual stress is addressed. The
research on buckling of behavior of columns is limited
to elastic (Bradford 1997) and finally, the inelastic
buckling of the columns is analyzed by considering
four different I-sections that are manufactured in
Korea and these results are compared it with the
design method in KSDM (1995).

2. Energy solution
2.1 General
The energy-based method used by Lee (2001) is

adopted in this study to analyze the beam-columns
and columns with the simplified residual stress.
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Figure 1(a) Beam-Column
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Figure 1(b) Applied axial force and moment
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The reference axis positioned at the mid-height of
web is shown in Fig. 1(a). Figure 1(b) shows the
simply supported I-beam at its end with length L,
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which is subjected to a concentric axial compressive
force and uniform bending. The flanges are treated as
the rigid beam, while the plate theory is used for the
web. Thus, the well-known beam and plate theory is
deployed for the flange and the web respectively. A
detail method of energy method is given in Lee (2001)
and Lee and Oh (2004). It has been observed that a
pattern of residual stress used in North American is
different to those of the residual stress used in

Europe. This is attributable to the method of

manufacturing the I-sections. The simplified residual
stress distribution is shown in Fig. 2. A simplified
pattern of residual stress assumes a constant tensile
stress in the web and the bilinear residual stress in
the flange. In this figure,

o, =030, (1)
and
BT
c =|——|o
g [BTH“(DJ)] ‘ (2)

where B and T are the flange width and the
thickness respectively, D is the overall depth of the
section and t, is the web thickness. The simplified
residual  stress idealization satisfies the static
equilibrium, but not that due to torsional equilibrium
as

fo.da = j(x: +y)o . dd =0

y (3)
N /]
o-l'(‘
(0% k /
—
Figure 2. simplified residual stress models
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2.2 Moment-curvature relationship for beam-
column

The beam-column subjected to constant axial force
and uniform bending is considered in this study. The
moment-thrust-curvature  relationship  should be
established before the out-of-plane buckling analysis.

The applied strain &. (x.») at any point of the cross
section can be expressed as

e (x,y)=¢ +(v+7)p+e (x.y) (4)

where Y is assumed neutral axes. € is strain due

to a constant axial compressive force, P is curvature,

and the residual strain is given by

£(c1)=0,(x})VE  The regions of elastic, yielded
and stain hardened of the cross—sections can be
established with Eqn. 4 with initially assumed neutral
axes and curvature. With predetermined the elastic
and inelastic regions of the cross-section, the stress
in the cross-section can be determined with tangent
modulus theory as

o(x.3)= [ Ede, + Fe,
(5)

The appropriate tangent modulus is shown in Fig. 3.

Stress
A

£, &, =SE, Strain

Figure 3. Trilinear elastic-plastic-strain hardening
constitutive model

The equilibrium condition of axial force is then used

to calculate the position of neutral axis with given
curvature, and the maximum moment can be
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determined. The axial force and moment is given as

N = J.*O'(x,y)a'A (6)

M, =[x, y)ydx (7)

4

2.3 Determination of end moment for beam-
column

The end moment is determined using Newmark
(1943) integration technique with known value of the
maximum moment and the curvature at the mid span.
The flexural rigidity about major axis is determined
as

M max

where (£), is the secant flexural modulus of
rigidity. The iterative procedure is adopted to
applied end moment. Firstly
deflected shape v of the
beam-column is assumed and the elastic deflection is

determine  the
approximate the

assumed for initial approximation (Trahair and
Bradford 1998). The beam-column member is divided
to four equally spaced stations and compute the new
M+ Ny
curvature at the each stations using - (E1),

where moment M is initially guessed. The initially
assumed curvatures are corrected with the new
curvature. This process is repeated until initially
assumed deflections are equal to the calculated
deflection. The applied end moment is then
M=M _ —Nv

max sicspan

2.4 Stress-strain relationship for column

The strain due to the bending is eliminated from
applied strain given in Eqn. 4 to consider axial force
and residual strain. The applied external strain
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£, (x,y) due to the concentric compressive force on a
cross—section is

£, (xv }’) =€, t+€, (xv y) (9)

The applied load N is determined by integrating the
stresses over the cross—section and is given in Eqn. ©.

2.5 Buckling analysis

The buckling displacement and the twist of the
flange is shown in Fig. 4. The buckling displacement

U, U, and the twist @ . P is assumed as a sine

curve with a number (n) of harmonics, while the
buckling deformation of the web is assumed to be a
cubic curve. The buckling deformation of the web can
be expresses in terms of flange buckling deformation
by enforcing the displacement and slope campatibity
between the flange-web junctions.

Figure 4. Buckling deformations in the plane of the cross-
section

The total strain energy stored in the flange and the
web can be expressed as

U=U,+U, (10)

The beam theory (Timoshenko and Gere 1961) is

24

=



employed to determine the strain energy in the flange
with tangent modulus as was done by Trahair and
Kitipornchai (1972). The 'well-known’ isotropic plate
theory (Timoshenko and Woinowsky-Krieger 1959) is
used for elastic regions and orthotropic plate theory
based on flow theory of plasticity given by Haaijer
(1957) and Dawe and Kulak (1984) is used for the
yielded and the strain hardened regions. The stiffness

matrices [k r] and [k.] can be derived from the beam
theory for the flange and the plate theory for the
web. The total strain energy stored in the flange and
the web can be expressed in term of stiffness matrices
of the flange and the web.

kl=lk, J+[x.] (11)

The simplified pattern of residual stress satisfies
the static equilibrium but not that with axial torque.
In order to satisfy the condition of vanishing axial
torque, the torsional rigidity should be changes to

(GJ), —fcr,_ (" +y° Jia

for the flange and the web.
as was done by Trahair (1993).

The work done by the flange and the web can be
expressed as

V=Vt (12)

The work done by the flange and the web can lead
to the stability matrices of the flange [g,] and the

web [g] and is given as

e]=lg, [+[g.] (13)

It should be noted that the stiffness and the
stability matrices of the flange and the web are
depend nonlinearly on the applied curvature.
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2.6 Buckling solution

The total potential energy during buckling in the
flange and the web can be written as

1l =%{q}r([k]~[g]){q} (14)

Minimizing Eqn. 14 with respect to {q} in the

usual way produces the buckling condition

all
m=([k]—k]Xq}={o} (15)
As mentioned earlier that the stiffness and stability
matrices are function of applied curvature, and
therefore the value of applied curvature P s
adjusted until Egn. 15 vanishes. The most
appropriate iterative method is the method of
bisections because ill-behavior of Egn 15 in the
mathematical sense.

3. Numerical study

The inelastic buckling behavior of the I-sections is
investigated in this section. The material property in
this study is same as KSDM (1995). The elastic
modulus  E=2.1x106 ke/cm*(205.926%103MPa), and

the ratio E/E. = 40(which is in range from 35 to
42). The vield stress @ is 2400 kg/cm (235MPa).
and Poisson’s ratio = 0.3, and e, = 10&,. The

energy method presented in this paper is lateral-
distortional buckling and it is necessary to suppress
the web distortion so that lateral-distortional buckling
mode becoming a lateral-torsional one. This can be
achieved by expressing the strain energy due to

out-of-plane plate flexure of the web v, as (Bradford
and Trahair (1982)).
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where D. is plate rigidity factor and 7 is set to a
large value (say 106)

3.1. Inelastic lateral-torsional buckling of besm-
columns

The considered cross—sections in this study are
800x300, 400x400, 300x175. and 200x150. The
verification of current method is demonstrated by
comparing it with inelastic lateral-torsional buckling
results obtained in this study and Abdel-Sayed &
Aglan (1973). The inelastic lateral-torsional buckling
solution obtained by Abdel-Sayed and Aglan is a
simply supported North American 8WF31 beam-
column and assumed the simplified pattern of residual
stress. The material properties and geometry of the
cross—section can be found in their paper. Figure 5
shows the comparison between the inelastic buckling
load results obtained in this study and Abdel-Sayed
and Aglan (1973) buckling solution with constant

axial force 0.6V, where M. is the squash loaded. In
the figure, the end buckling normalized with respect

to the yield moment M ~, while the major axis

slenderness ratio Lfr, 1s used. There are two

E

different value of the tangent modulus ©: is used in

yielded regions in this analysis. The tangent modulus
£, assumed by Abdel-Sayed & Aglan’'s(1973) study

was that £ is equal to elastic modulus for elastic
regions and zero is used for yielded regions, and
strain hardening modulus is used for strain-hardened
regions. Furthermore, Abdel-Sayed & Aglan(1973)
assumed that the yielded regions of the cross-section
do not affect the torsional rigidity, and therefore
Saint Venant torsional rigidity was used for the
elastic and yielded regions. This study has adopted
same assumption as Abdel-Sayed and Aglan’s study

and the results agreed very well with independent

solutions.
0.8 (5\:36 ksi (248.04MPa)
E = 30e3 ksi (206.7¢3 MPa)
b =45
0.7 s=12
v =0.3
B =8 inches(203.2 mm)
0.6

T =0.433 inches (11 mm)
\ h=7.567 inches(192.2 mm)
0.5 t,=0.288 inches (7.3 mm)

E=E  for yieldregion

M/M

0.4

E=0.0 foryieldregion
03

02 Abdel-Sayed and Aglan (1973)

0.1 Axial force (N)=0.6N,

0 10 20 30 40 50 60 70
Lir,

Figure 5. Inelastic lateral-torsional buckling comparison
with Abdel-Sayed and Aglan (1973).

Figure 5 also have shown the inelastic buckling

solution with £ =E. in the yvielded and strain
hardened regions where commences of strain
hardening buckling occurs much earlier than

conservative assumption of £ =0 at a higher
slenderness ratio.

The results of inelastic lateral-torsional buckling of
beam-columns are shown in Figs. 6, 7, 8 and 9 with
a constant axial compressive force. In these figure,
the inelastic buckling moments M are normalized

with respected to yield moment M, as function of

dimensionless slenderness Lfr, , where *-is radius of
gyration about x-axis.
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Figure 6. Inelastic lateral-torsional buckling of Figure 8. Inelastic lateral-torsional buckling of
beam-column 800x300. beam-column 300x175.
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Figure 9. Inelastic lateral-torsional buckling of

Figure 7. Inelastic lateral-torsional buckling of
beam-column 200x150.

beam-column 400x400.
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As would be expected that the inelastic buckling
strength of beam-column is lower than the elastic
value. This is due to the yielding of cross-section
caused by combination of the residual stress and
applied load. The buckling resistance is substantial
reduced as axial force increased as the compressive
axial force is increased. The buckling results of
beam-column have shown that the slender [-section
800x300 and 300x175 has no reserve of bending
capacity for /7016 and 1./7,)21 respectively but the

compact I-section 400x400 and 200x150 has no
reserve of bending capacity for /7,050 and [/r,)38

respectively at a compressive axial force of 0.8P,.

3.2. Inelastic flexural buckling of columns

The inelastic buckling of columns subjected to a
concentric compressive force is considered in this
study. Before introduction of the limit state design
method, the columns were designed according to the
allowable or working stress design method. The
working stress method in British and Australian steel
design standard was based on the Perry-Robertson
equation and used limiting stress at member with
initial curvature only first yields as the basis for
determining the strength. The allowable stress method
in American steel design standard was different to
those of British and Australian standard, it used the
tangent modulus critical stress of the straight member
with residual stress in the member. The working or
allowable stress design method has been modified to
the limit state design method or LRFD basis on the
experimental studies and included the geometric
imperfection so that they are in substantial agreement
with experimental results. The cwrent British and
Australian steel design standard is based on the
multi-curve approach to predict the capacity of the
member and Perry-Robertson equation is modified
empirically to produce a member capacity curves so
that particular members are falls into one of one of
these curves, which is depending on the residual
stress and geometric imperfection. A regression

analysis of the large experimental results were used
to produce an only one design curve by American steel
design standard.

Elastic buckling

0.8

0.6

Flexural buckling

N/Ns

0.4

(Ns/N,) 0

Figure 10. Inelastic flexural buckling of column 800x300

Elastic buckling

0.8

Flexural buckling
0.6

N/Ns

0.4

0 0.5 1 1.5 2

(N S/N L)ll..<

Figure 11. Inelastic flexural buckling of column 400x400

The design method KSDM (1995) is based on the
allowable stress method. Therefore, the purpose of
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this study is to examine the accuracy of the KSDM
(1995). The considered cross—sections considered in
this section are same as previous sub-section. Figure
from 10 to 13 show the inelastic buckling load
obtained in this study with the simplified residual
stress model. In the figures. the inelastic buckling
load ¥ is normalized with respect to the squash load

N, (:AG‘) . and the modified column slenderness is

represented as VN, /N, where V& is the Euler load

of the column. These figures is also shown column

curve derived from KSDM(1995), and is given as ,
A<A,

Elastic buckling

0.8

Flexural buckling

0.6

N/Ns

0.4
KSDM

(Ns/NF)“'S

Figure 12. Inelastic flexural buckling of column 300x175
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[t can be seen in the figures that the inelastic
buckling load curve derived from this study and
KSDM(1995) are not agreed. The disparity between
the KSDM(1995) and the numerical solution is not
surprising, since the KSDM(1995) are based on the
allowable stress design method while those of the
numerical results obtained in this study are based on
inelastic bifurcation. The discrepancy is increased as
the length of columns is decreased.

Elastic buckling

0.8

Flexural buckling
0.6

N/Ns

0.4

(Ns/Np)" *

Figure 13. Inelastic flexural buckling of column 200x150

Table 1. Percentage difference of buckling load at

VN, /N, is approximately equal 1.

Cross—Section % Difference
200x150 47.7
300x175 48.8
400x400 46.5
300=300 46.3

Table 1 shows the percentage between the current

method and KSDM(1995) at N(/N, approximately
equal to 1. It can be seen that the percentage

difference  between  these two  methods s

approximately 48. The percentage difference is
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accentuated for intermediate and short span of the
columns. This comparison study has demonstrated that
the design method in KSDM(1995) is excessively
conservative.

4. Conclusion

An energy-based method is deployed to analysis the
inelastic buckling behavior of the beamrcolumns and
the columns. The simplified pattern of residual stress
is incorporated with energy-based method which is a
lead to iterative solution of a fourth order linear
eigenproblem. A finding of this study is that the
buckling behavior of the beam—columns is strongly
by the
I-sections have more bending capacity than the slender

influence residual stress. The compact
I-section at a given value of the dimensionless length

L/r, as the axial force is increased. The reduction of

elastic buckling load is signification in the inelastic
region due to the presence of the residual stress,
whereas the effect of the residual stress in the elastic
region is negligible. This study is then extended to the
inelastic buckling of the columns subjected to a
concentric axial compressive force and these results
are compared with design method in KSDM (1995). It
is found that KSDM is excessively conservative.

References

Abdel-Sayed, G. and Aglan, A.A. (1973). Inelastic
Lateral Torsional Buckling of Beam Columns,
Publications, IABSE, 33-11, 1-16.

Bradford, M.A. (1997). Lateral-Distortional Buckling
of Continuously Restrained Columns, Journal of
Constructional Steel Research, 42(2), 121-139.

Bradford, M.A. and Trahair, N.S. (1982).
Distortional of Thin-Web Beam-
Columns, Engineering Structures, 4. 2-10.

Dawe, J.L. and Kulak, G.L. (1984). Plate Instability
of W Shapes, Journal of Structural Engineering,

Buckling

ASCE, 110(6), 1278-1291.
Fukumoto, Y. and Galambos, T. V. (1966). Inelastic
Buckling of Beam-Columns.
ASCE,

Lateral-Torsional
Journal of the
92(ST2). 41-61.
Haaijer, G. (1957). Plate Buckling in the Strain-
Hardening Range, Journal of the Engineering
Mechanics Division. ASCE, 83(EM2), 1212.1-47.

Structural Division,

Ketter, R.L., Kaminsky, E.L. and Beedle, L.S.
(1955). Plastic Deformation of Wide-Flange
Beam~-Columns,  Transactions, ASCE, 100,
1028-1061.

Korean Steel Designers” Manual (KSDM) (1995), vol.
3, Design of Steel Structure, Korean Society of
Steel Construction.

Lee, D-S. (2001). Distortional Buckling of I-Sections,
PhD dissertation, The University of New South
Wales, Australia.

Lee, D-S. and Oh, S-T.(2004) Codified Design of
I-Beam Under Uniform Bending, Submitted for
publication r .

Miranda, C. and Ojalvo, M.
Lateral-Torsional

(1965).

Buckling of Beam-Columns,

Inelastic

Journal of the Engineering Mechanics Division,
ASCE, 91(EM®6), 21-37.

Newmark. N.M. (1943). Numerical Procedure for
Computing Deflections, Moments, and Buckling
Loads, Transactions, ASCE, 108, 1161-1188.

Timoshenko, S.P. and Gere, J.M. (1961) Theory of
Elastic Stability, McGraw Hill, New York.

Timoshenko, S.P. and Woinowsky-Krieger, S. (1959).
Theory of Plates and Shells, McGraw Hill, New
York.

Trahair, N.S. (1993). Flexural-Torsional Buckling of
Structures, Chapman and Hall, London.

Trahair, N.S. and Kitipornchai, S. (1972). Buckling
of Inelastic [-Beams Under Uniform Moment,
Journal of the Structural Division, ASCE,

98(ST11), 2551-2566

(X} 0 2003, 11. 12 / AA 2003. 12. 65/
AAIREY 2004, 4. 2)

224 st=2ze=sts| =27 M6 25(EA 695) 20049 4¥

it



