DOI QR코드

DOI QR Code

Comparison of Hybridization Behavior between Double and Single Strand of Targets and the Application of Asymmetric PCR Targets in cDNA Microarray

  • Wei, Qing (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Liu, Sanzhen (Shanghai BioStar Genechip Institute) ;
  • Huang, Jianfeng (Shanghai BioStar Genechip Institute) ;
  • Mao, Xueying (Shanghai BioStar Genechip Institute) ;
  • Chu, Xiaohui (Shanghai BioStar Genechip Institute) ;
  • Wang, Yu (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Qiu, Minyan (Shanghai BioStar Genechip Institute) ;
  • Mao, Yumin (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Xie, Yi (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Li, Yao (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University)
  • Published : 2004.07.31

Abstract

Double stranded targets on the cDNA microarray contain representatives of both the coding and noncoding strands, which will introduce hybridization competition with probes. Here, the effect of double and single strands of targets on the signal intensity and the ratios of Cy5/Cy3 within the same slide were compared. The results show that single stranded targets can increase the hybridization efficiency without changing the Cy5/Cy3 ratio. Based on these results, a new strategy was established by generating cDNA targets with asymmetric PCR, instead of conventional PCR, to increase the sensitivity of the cDNA microarray. Furthermore, the feasibility of this approach was validated. The results indicate that the cDNA microarray system based on asymmetric PCR is more sensitive, with no decrease in the reliability and reproducibility as compared with that based on conventional symmetric PCR.

Keywords

References

  1. Aimee, M., Dudley, J. A., Steffen, M. A. and George M. (2002) Church. Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc. Natl. Acad. Sci. USA 99, 7554-7559. https://doi.org/10.1073/pnas.112683499
  2. DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su, Y. A. and Trent, J. M. (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457-460. https://doi.org/10.1038/ng1296-457
  3. Epstein, C. B., Hale, W. and Butow, R. A. (2001) Numerical methods for handling uncertainty in microarray data: an example analyzing perturbed mitochondrial function in yeast. Methods Cell Biol. 65, 439-452. https://doi.org/10.1016/S0091-679X(01)65026-X
  4. Farbrother, P., Muller, S., Noegel, A. A. and Eithinger, L. (2002) Comparison of probe preparation methods for DNA microarrays. Biotechniques 33, 884-888.
  5. Kinjo, M. (1998) Detection of asymmetric PCR products in homogeneous solution by fluorescence correlation spectroscopy. Biotechniques 25, 706-715.
  6. Kooperberg, C., Fazzio, T. G., Delrow, J. J. and Tsukiyama, T. (2002) Improved background correction for spotted DNA microarrays. J. Comput. Biol. 9, 55-66. https://doi.org/10.1089/10665270252833190
  7. Li, Y., Li, Y., Tang, R., Xu, H., Qiu, M., Chen, Q., Chen, J., Fu, Z., Ying, K., Xie, Y. and Mao, Y. (2002) Discovery and analysis of hepatocellular carcinoma genes using cDNA microarrays. J. Cancer Res. Clin. Oncol. 128, 369-379. https://doi.org/10.1007/s00432-002-0347-0
  8. Mao, H. and Rosenthal, K. S. (1999) Synthesis of radioactive single-stranded DNA probes using asymmetrical PCR and oligonucleotide random priming. Biotechniques 27, 674-678.
  9. Miki, R., Kadota, K., Bono, H., Mizuno, Y., Tomaru, Y., Carninci, P., Itoh, M., Shibata, K., Kawai, J., Konno, H., Watanabe, S., Sato, K., Tokusumi, Y., Kikuchi, N., Ishii, Y., Hamaguchi, Y., Nishizuka, I., Goto, H., Nitanda, H., Satomi, S., Yoshiki, A., Kusakabe, M., DeRisi, J. L., Eisen, M. B., Iyer, V. R., Brown, P. O., Muramatsu, M., Shimada, H., Okazaki, Y. and Hayashizaki, Y. (2001) Delineating developmental and metabolic pathways in vivo by expression profiling using the RIKEN set of 18,816 full-length enriched mouse cDNA arrays. Proc. Natl. Acad. Sci. USA 98, 2199-2204.ᤐ돀䢧?⨀堘?⨀䣀?⨀돐检?⨀??⨀烀?⨀줏덐胀?⨀젏ꠏ䵣䝡牲礬⁊⸠䐮㭔慫慢慹慳桩Ⱐ央㭆潳瑥爬⁄⸠圮⨀ἀ鶵뎽坖浇㒐?⨀ 蒶錝큰浇袐?⨀ሀ릳눝遱浇ꢐ?⨀ 릳눝遱浇좐?⨀Ḁ릳눝遱浇?⨀᠀릳눝遱浇࢑?⨀᠀릳눝遱浇⢑?⨀ᰀ閰鈽浇䢑?⨀Ḁ끳醽癶浇梑?⨀؀郑逝᎑浇袑?⨀ༀ圝ᆓ浇ꢑ?⨀฀೒鎝႔浇좑?⨀᠀ᕴ醽ኔ浇?⨀ሀᅵ늝皗浇࢒?⨀ 삵嚝뎲浇⢒?⨀ᬀ삵嚝뎲浇䢒?⨀ 삵嚝 https://doi.org/10.1073/pnas.041605498
  10. Nallur, G., Luo, C., Fang, L., Cooley, S., Dave, V., Lambert, J., Kukanskis, K., Kingsmore, S., Lasken, R. and Schweitzer, B. (2001) Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res. 29, E118. https://doi.org/10.1093/nar/29.23.e118
  11. Peterson, A. W., Heaton, R. J. and Georgiadis, R. M. (2001) The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 29, 5163-5168. https://doi.org/10.1093/nar/29.24.5163
  12. Quackenbush, J. (2002) Microarray data normalization and transformation. Nat. Genet. 32, 496-501. https://doi.org/10.1038/ng1032
  13. Salin, H., Vujasinovic, T., Mazurie, A., Maitrejean, S., Menini, C., Mallet, J. and Dumas, S. (2002) A novel sensitive microarray approach for differential screening using probes labelled with two different radioelements. Nucleic Acids Res. 30, 17. https://doi.org/10.1093/nar/30.1.17
  14. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York, USA.
  15. Schena, M., Heller, R. A., Theriault, T. P., Konrad, K., Lachenmeier, E. and Davis, R. W. (1998) Microarrays: biotechnology's discovery platform for functional genomics. Trends Biotechnol. 16, 301-306. https://doi.org/10.1016/S0167-7799(98)01219-0
  16. Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science 270, 467-470. https://doi.org/10.1126/science.270.5235.467
  17. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O. and Davis, R. W. (1996) Parallel human genome analysis: Microarray based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10614-10619. https://doi.org/10.1073/pnas.93.20.10614
  18. Shchepinov, M. S., Case-Green, S. C. and Southern, E. M. (1997) Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucleic Acids Res. 25, 1155-1161. https://doi.org/10.1093/nar/25.6.1155
  19. Southern, E., Mir, K. and Shchepinov, M. (1999) Molecules interactions on microarrays. Nat. Genet. 21, 5-9. https://doi.org/10.1038/4429
  20. Stears, R. L., Martinsky, T. and Schena, M. (2003) Trends in microarray analysis. Nat. Med. 9, 140-145. https://doi.org/10.1038/nm0103-140
  21. Wang, E., Miller, L. D., Ohnmacht, G. A., Liu, E. T. and Marincola, F. M. (2000) High-fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18, 457-459. https://doi.org/10.1038/74546
  22. Wang, H. Y., Malek, R. L., Kwitek, A. E., Greene, A. S., Luu, T. V., Behbahani, B., Frank, B., Quackenbush, J. and Lee, N. H. (2003) Assessing unmodified 70-mer oligonucleotide probe performance on glass-slide microarrays. Genome Biol. 4, 5.
  23. Winzeler, E. A., Schena, M. and Davis, R. W. (1999) Fluorescence-based expression monitoring using microarrays. Methods Enzymol. 306, 3-18. https://doi.org/10.1016/S0076-6879(99)06003-6
  24. Yue, H., Eastman, P. S., Wang, B. B., Minor, J., Doctolero, M. H., Nuttall, R. L., Stack, R., Becker, J. W., Montgomery, J. R., Vainer, M. and Johnston, R. (2001) An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Res. 29, E41-1. https://doi.org/10.1093/nar/29.8.e41

Cited by

  1. Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets vol.64, 2015, https://doi.org/10.1016/j.bios.2014.08.049
  2. Using hippocampal microRNA expression differences between mouse inbred strains to characterise miRNA function vol.19, pp.7-8, 2008, https://doi.org/10.1007/s00335-008-9116-y
  3. Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor vol.103, pp.11, 2006, https://doi.org/10.1073/pnas.0511325103
  4. Profiling RNA Polymerase–Promoter Interaction by Using ssDNA–dsDNA Probe on a Surface Addressable Microarray vol.8, pp.14, 2007, https://doi.org/10.1002/cbic.200700340
  5. Gold Nanoparticles with Asymmetric Polymerase Chain Reaction for Colorimetric Detection of DNA Sequence vol.84, pp.3, 2012, https://doi.org/10.1021/ac201713t
  6. Preparation of Single-Stranded DNA for Pyrosequencing by Linear-after-the-Exponential-Polymerase Chain Reaction vol.37, pp.4, 2009, https://doi.org/10.1016/S1872-2040(08)60095-X