DOI QR코드

DOI QR Code

Inhibition of Herpesvirus-6B RNA Replication by Short Interference RNAs

  • Yoon, Jong-Sub (Department of Microbiology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Sun-Hwa (Department of Microbiology, College of Medicine, The Catholic University of Korea) ;
  • Shin, Min-Chul (Department of Microbiology, College of Medicine, The Catholic University of Korea) ;
  • Lee, Dong-Gun (Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Hong, Seong-Karp (Department of Microbiology, College of Medicine, The Catholic University of Korea) ;
  • Jung, Yong-Tae (Department of Microbiology, College of Advanced Science, Dankook University) ;
  • Khang, In-Gu (Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Shin, Wan-Shik (Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Kim, Chun-Choo (Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Paik, Soon-Young (Department of Microbiology, College of Medicine, The Catholic University of Korea)
  • Published : 2004.05.31

Abstract

RNA interference (RNAi) is a process of sequence-specific gene silencing, which is initiated by double-stranded RNA (dsRNA). RNAi may also serve as an antiviral system in vertebrates. This study describes the inhibition of herpesvirus-6B (HHV-6B) replication by short interference RNAs (siRNAs) that are targeted to the U38 sequence that encodes DNA polymerase. When virus-infected SupT1 cells were treated by siRNA, these cells blocked the cytopathic effect (CPE) and detected the HHV-6B antibody-negative in indirect immunofluorescence assays (IFA). Our result suggests that RNAi can efficiently block Herpesvirus-6B replication.

Keywords

References

  1. Andino, R. (2003) RNAi puts a lid on virus replication. Nat. Biotechnol. 21, 629-630. https://doi.org/10.1038/nbt0603-629
  2. Baglioni, C. and Nilsen, T. W. (1983) Mechanisms of antiviral action of interferon. Interferon. 5, 23-42.
  3. Bae, J. S. and Lee, S. T. (2001) The Human PTK6 interacts with a 23-kDa tyrosine-phosphorylated protein and is localized in cytoplasm in breast carcinoma T-47D cells. J. Biochem. Mol. Biol. 34, 33-38.
  4. Billy, E., Brondani, V., Zhang, H., Muller, U. and Filipowicz, W. (2001) Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl. Acad. Sci. USA 98, 14428-14433. https://doi.org/10.1073/pnas.261562698
  5. Caplen, N. J., Parrish, S., Imani, F., Fire, A. and Morgan, R. A. (2001) Specific inhibition of gene expression by small doublestranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742-9747. https://doi.org/10.1073/pnas.171251798
  6. Chiu, Y. L. and Rana, T. M. (2002) RNAi in human cells: Basic structural and functional Features of small interfering RNA. Mol. Cell 10, 549-561. https://doi.org/10.1016/S1097-2765(02)00652-4
  7. Cone, R. W., Huang, M. L., Corey, L., Zeh, J., Ashley, R. and Bowden, R. (1999) Human herpes virus 6 infection after bone marrow transplantation: clinical and virologic manifestations. J. Infect. Dis. 179, 311-318. https://doi.org/10.1086/314581
  8. Doniger, J., Muralidhar, S. and Rosenthal, L. J. (1999) Human cytomegalovirus and human herpes virus 6 genes that transform and transactivate. Clin. Microbiol. Rev. 12, 367-382.
  9. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498. https://doi.org/10.1038/35078107
  10. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. https://doi.org/10.1038/35888
  11. Garrus, J. E., von Schwedler, U. K., Pornillos, O. W., Morham, S. G., Zavitz, K. H., Wang, H. E., Wettstein, D. A., Stray, K. M., Cote, M., Rich, R. L., Myszka, D. G. and Sundquist, W. I. (2001) Tsg101 and the vacuolar protein sorting pathway are essential for hiv-1 budding. Cell 107, 55-65. https://doi.org/10.1016/S0092-8674(01)00506-2
  12. Hamasaki, K., Nakao, K., Matsumoto, K., Ichikawa, T., Ishikawa, H. and Eguchi, K. (2003) Short interfering RNA-directed inhibition of hepatitis B virus replication. FEBS Lett. 22, 51-54.
  13. Hannon, G. J. (2002) RNA interference. Nature 418, 244-251. https://doi.org/10.1038/418244a
  14. Hu, W. Y., Myers, C. P., Kilzer, J. M., Pfaff, S. L. and Bushman, F. D. (2002) Inhibition of retroviral pathogenesis by RNA interference. Curr. Biol. 6, 1301-1311.
  15. Isegawa, Y., Mukai, T., Nakano, K., Kagawa, M., Chen, J., Mori, Y., Sunagawa, T., Kawanishi, K., Sashihara, J., Hata, A., Zou, P., Kosuge, H. and Yamanishi, K. (1999) Comparison of the complete DNA sequences of human herpes virus 6 variants A and B. J. Virol. 73, 8053-8063.
  16. Jia, Q. and Sun, R. (2003) Inhibition of gamma herpesvirus replication by RNA interference. J. Virol. 77, 3301-3306. https://doi.org/10.1128/JVI.77.5.3301-3306.2003
  17. Kim, C. H., Park, Y. S., Chung, K. N. and Elwood, P. C. (2002) Sorting and function of the human folate receptor is independent of the caveolin expression in fisher rat thyroid epithelial cells. J. Biochem. Mol. Biol. 35, 395-402. https://doi.org/10.5483/BMBRep.2002.35.4.395
  18. Kapidia, S. B., Brideau-Anderson, A. and Chisari, F. V. (2003) Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl. Acad. Sci. USA 18, 2014-2018.
  19. Lee, D. G., Sang, T. P., Choi, Su, M., Kim, S. H., Choi, J. H., Yoo, J. H., Park, S. W., Lee, G. C., Paik, S. Y., Shin, W. S. and Kim, C. C. (2003) Prevalence of human herpesvirus-6B in Korean hematopoietic stem cell transplantation recipients. Mol. Cells, 16, 307-315.
  20. Li, W. X. and Ding, S. W. (2001) Viral suppressors of RNA silencing. Curr. Opin. Biotechnol. 12, 150-154. https://doi.org/10.1016/S0958-1669(00)00190-7
  21. Seo, M. Y., Abrignani, S., Houghton. M. and Han, J. H. (2003) Small interfering RNA-mediated inhibition of hepatitis C virus replication in the human hepatoma cell line Huh-7. J. Virol. 77, 810-812. https://doi.org/10.1128/JVI.77.1.810-812.2003
  22. Svoboda, P., Stein, P., Hayashi, H. and Schultz, R. M. (2000) Selective reduction of dormant maternal mRNA in mouse oocytes by RNA interference. Development 127, 4147-4156.
  23. Svoboda, P., Stein, P. and Schultz, R. M. (2001) RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem. Biophys. Res. Commun. 287, 1099-1104. https://doi.org/10.1006/bbrc.2001.5707

Cited by

  1. The silent treatment: RNAi as a defense against virus infection in mammals vol.24, pp.4, 2006, https://doi.org/10.1016/j.tibtech.2006.02.006
  2. Inhibition of red seabream iridovirus (RSIV) replication by small interfering RNA (siRNA) in a cell culture system vol.77, pp.2, 2008, https://doi.org/10.1016/j.antiviral.2007.10.007
  3. Targeting Marek's disease virus by RNA interference delivered from a herpesvirus vaccine vol.27, pp.2, 2009, https://doi.org/10.1016/j.vaccine.2008.10.023
  4. Transcriptome and proteome profiling of host responses to Marek's disease virus in chickens vol.138, pp.4, 2010, https://doi.org/10.1016/j.vetimm.2010.10.007
  5. Coxsackievirus B3 and adenovirus infections of cardiac cells are efficiently inhibited by vector-mediated RNA interference targeting their common receptor vol.14, pp.12, 2007, https://doi.org/10.1038/sj.gt.3302948
  6. Antiviral RNAi: Translating Science Towards Therapeutic Success vol.28, pp.12, 2011, https://doi.org/10.1007/s11095-011-0549-8
  7. Inhibition of Marek's disease virus replication by retroviral vector-based RNA interference vol.377, pp.2, 2008, https://doi.org/10.1016/j.virol.2008.03.019
  8. Inhibition of Monkeypox virus replication by RNA interference vol.6, pp.1, 2009, https://doi.org/10.1186/1743-422X-6-188